2,839 research outputs found
Magnetic field-free measurements of the total cross section for positrons scattering from helium and krypton
An electrostatic beam has been used to perform scattering measurements with an angular-discrimination of . The total cross sections of positrons scattering from helium and krypton have been determined in the energy range (10â300) eV. This work was initially stimulated by the investigations of Nagumo et al (2011 J. Phys. Soc. Japan 80 064301), the first positron field-free measurements performed with a similarly high resolution, which found significant discrepancies at low energies with most other experiments and theories. The present results show good agreement with theories and several other measurements, even those characterized by a much poorer angular discrimination, implying a small contribution from particles elastically scattered at forward angles, as theoretically predicted for He but not for Kr
The Use of Platelet-Rich Plasma (PRP) for the Management of Non-union Fractures.
PURPOSE OF REVIEW: The treatment of non-union fractures represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have been investigated and utilised to support and improve bone healing. Among these agents, platelet-rich plasma (PRP) is an emerging strategy that is gaining popularity. The aim of this review is to evaluate the current literature regarding the application and clinical effectiveness of PRP injections, specifically for the treatment of non-union fractures. RECENT FINDINGS: The majority of published studies reported that PRP accelerated fracture healing; however, this evidence was predominantly level IV. The lack of randomised, clinical trials (level I-II evidence) is currently hampering the successful clinical translation of PRP as a therapy for non-union fractures. This is despite the positive reports regarding its potential to heal non-union fractures, when used in isolation or in combination with other forms of treatment. Future recommendations to facilitate clinical translation and acceptance of PRP as a therapy include the need to investigate the effects of administering higher volumes of PRP (i.e. 5-20Â mL) along with the requirement for more prolonged (>â11Â months) randomised clinical trials
The moderating role of overcommitment in the relationship between psychological contract breach and employee mental health
Reimann M. The moderating role of overcommitment in the relationship between psychological contract breach and employee mental health. JOURNAL OF OCCUPATIONAL HEALTH. 2016;58(4-5):425-433.Objectives: This study investigated whether the association between perceived psychological contract breach (PCB) and employee mental health is moderated by the cognitive-motivational pattern of overcommitment (OC). Linking the psychological contract approach to the effort-reward imbalance model, this study examines PCB as an imbalance in employment relationships that acts as a psychosocial stressor in the work environment and is associated with stress reactions that in turn negatively affect mental health. Methods: The analyses were based on a sample of 3,667 employees who participated in a longitudinal linked employer employee survey representative of large organizations (with at least 500 employees who are subject so social security contributions) in Germany. Fixed-effects regression models, including PCB and OC, were estimated for employee mental health, and interaction effects between PCB and OC were assessed. Results: The multivariate fixed-effects regression analyses showed a significant negative association between PCB and employee mental health. The results also confirmed that OC does indeed significantly increase the negative effect of PCB on mental health and that OC itself has a significant and negative effect on mental health. Conclusions: The results suggest that employees characterized by the cognitive-motivational pattern of OC are at an increased risk of developing poor mental health if they experience PCB compared with employees who are not overly committed to their work. The results of this study support the assumption that psychosocial work stressors play an important role in employee mental health
Noiseless Linear Amplification and Distillation of Entanglement
The idea of signal amplification is ubiquitous in the control of physical
systems, and the ultimate performance limit of amplifiers is set by quantum
physics. Increasing the amplitude of an unknown quantum optical field, or more
generally any harmonic oscillator state, must introduce noise. This linear
amplification noise prevents the perfect copying of the quantum state, enforces
quantum limits on communications and metrology, and is the physical mechanism
that prevents the increase of entanglement via local operations. It is known
that non-deterministic versions of ideal cloning and local entanglement
increase (distillation) are allowed, suggesting the possibility of
non-deterministic noiseless linear amplification. Here we introduce, and
experimentally demonstrate, such a noiseless linear amplifier for
continuous-variables states of the optical field, and use it to demonstrate
entanglement distillation of field-mode entanglement. This simple but powerful
circuit can form the basis of practical devices for enhancing quantum
technologies. The idea of noiseless amplification unifies approaches to cloning
and distillation, and will find applications in quantum metrology and
communications.Comment: Submitted 10 June 200
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control
Optical phase estimation is a vital measurement primitive that is used to
perform accurate measurements of various physical quantities like length,
velocity and displacements. The precision of such measurements can be largely
enhanced by the use of entangled or squeezed states of light as demonstrated in
a variety of different optical systems. Most of these accounts however deal
with the measurement of a very small shift of an already known phase, which is
in stark contrast to ab-initio phase estimation where the initial phase is
unknown. Here we report on the realization of a quantum enhanced and fully
deterministic phase estimation protocol based on real-time feedback control.
Using robust squeezed states of light combined with a real-time Bayesian
estimation feedback algorithm, we demonstrate deterministic phase estimation
with a precision beyond the quantum shot noise limit. The demonstrated protocol
opens up new opportunities for quantum microscopy, quantum metrology and
quantum information processing.Comment: 5 figure
Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model.</p> <p>Methods</p> <p>Pigs were randomized to pre-reperfusion hypothermia (n = 7), post-reperfusion hypothermia (n = 7) or normothermia (n = 5). A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI.</p> <p>Results</p> <p>Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8%) compared to post-reperfusion hypothermia (80 ± 6%, p < 0.05) and by 39% compared to normothermia (75 ± 5%, p < 0.05). Pre-reperfusion hypothermia infarctions were patchier in appearance with scattered islands of viable myocardium. Pre-reperfusion hypothermia abolished (0%, p < 0.001), and post-reperfusion hypothermia significantly reduced microvascular obstruction (10.3 ± 5%; p < 0.05), compared to normothermia: (30.2 ± 5%).</p> <p>Conclusion</p> <p>Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application.</p
Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunterâgatherers
The introduction of pottery vessels to Europe has long been seen as closely linked with the spread of agriculture and pastoralism from the Near East. The adoption of pottery technology by hunterâgatherers in Northern and Eastern Europe does not fit this paradigm, and its role within these communities is so far unresolved. To investigate the motivations for hunterâgatherer pottery use, here, we present the systematic analysis of the contents of 528 early vessels from the Baltic Sea region, mostly dating to the late 6thâ5th millennium cal BC, using molecular and isotopic characterization techniques. The results demonstrate clear sub-regional trends in the use of ceramics by hunterâgatherers; aquatic resources in the Eastern Baltic, non-ruminant animal fats in the Southeastern Baltic, and a more variable use, including ruminant animal products, in the Western Baltic, potentially including dairy. We found surprisingly little evidence for the use of ceramics for non-culinary activities, such as the production of resins. We attribute the emergence of these subregional cuisines to the diffusion of new culinary ideas afforded by the adoption of pottery, e.g. cooking and combining foods, but culturally contextualized and influenced by traditional practices
Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2
Over the last years, superconductivity has been discovered in several
families of iron-based compounds. Despite intense research, even basic
electronic properties of these materials, such as Fermi surfaces, effective
electron masses, or orbital characters are still subject to debate. Here, we
address an issue that has not been considered before, namely the consequences
of dynamical screening of the Coulomb interactions among Fe-d electrons. We
demonstrate its importance not only for correlation satellites seen in
photoemission spectroscopy, but also for the low-energy electronic structure.
From our analysis of the normal phase of BaFe2As2 emerges the picture of a
strongly correlated compound with strongly doping- and temperature-dependent
properties. In the hole overdoped regime, an incoherent metal is found, while
Fermi-liquid behavior is recovered in the undoped compound. At optimal doping,
the self-energy exhibits an unusual square-root energy dependence which leads
to strong band renormalizations near the Fermi level
- âŠ