2,614 research outputs found
The Dreaming Variational Autoencoder for Reinforcement Learning Environments
Reinforcement learning has shown great potential in generalizing over raw
sensory data using only a single neural network for value optimization. There
are several challenges in the current state-of-the-art reinforcement learning
algorithms that prevent them from converging towards the global optima. It is
likely that the solution to these problems lies in short- and long-term
planning, exploration and memory management for reinforcement learning
algorithms. Games are often used to benchmark reinforcement learning algorithms
as they provide a flexible, reproducible, and easy to control environment.
Regardless, few games feature a state-space where results in exploration,
memory, and planning are easily perceived. This paper presents The Dreaming
Variational Autoencoder (DVAE), a neural network based generative modeling
architecture for exploration in environments with sparse feedback. We further
present Deep Maze, a novel and flexible maze engine that challenges DVAE in
partial and fully-observable state-spaces, long-horizon tasks, and
deterministic and stochastic problems. We show initial findings and encourage
further work in reinforcement learning driven by generative exploration.Comment: Best Student Paper Award, Proceedings of the 38th SGAI International
Conference on Artificial Intelligence, Cambridge, UK, 2018, Artificial
Intelligence XXXV, 201
Discrimination of Optical Coherent States using a Photon Number Resolving Detector
The discrimination of non-orthogonal quantum states with reduced or without
errors is a fundamental task in quantum measurement theory. In this work, we
investigate a quantum measurement strategy capable of discriminating two
coherent states probabilistically with significantly smaller error
probabilities than can be obtained using non-probabilistic state
discrimination. We find that appropriate postselection of the measurement data
of a photon number resolving detector can be used to discriminate two coherent
states with small error probability. We compare our new receiver to an optimal
intermediate measurement between minimum error discrimination and unambiguous
state discrimination.Comment: 5 pages, 4 figure
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Acceptability of novel lifelogging technology to determine context of sedentary behaviour in older adults
<strong>Objective:</strong> Lifelogging, using body worn sensors (activity monitors and time lapse photography) has the potential to shed light on the context of sedentary behaviour. The objectives of this study were to examine the acceptability, to older adults, of using lifelogging technology and indicate its usefulness for understanding behaviour.<strong> </strong><strong>Method:</strong> 6 older adults (4 males, mean age: 68yrs) wore the equipment (ActivPAL<sup>TM</sup> and Vicon Revue<sup>TM</sup>/SenseCam<sup>TM</sup>) for 7 consecutive days during free-living activity. The older adults’ perception of the lifelogging technology was assessed through semi-structured interviews, including a brief questionnaire (Likert scale), and reference to the researcher's diary. <strong>Results:</strong> Older adults in this study found the equipment acceptable to wear and it did not interfere with privacy, safety or create reactivity, but they reported problems with the actual technical functioning of the camera. <strong>Conclusion:</strong> This combination of sensors has good potential to provide lifelogging information on the context of sedentary behaviour
Mechanical Metamaterials with Negative Compressibility Transitions
When tensioned, ordinary materials expand along the direction of the applied
force. Here, we explore network concepts to design metamaterials exhibiting
negative compressibility transitions, during which a material undergoes
contraction when tensioned (or expansion when pressured). Continuous
contraction of a material in the same direction of an applied tension, and in
response to this tension, is inherently unstable. The conceptually similar
effect we demonstrate can be achieved, however, through destabilisations of
(meta)stable equilibria of the constituents. These destabilisations give rise
to a stress-induced solid-solid phase transition associated with a twisted
hysteresis curve for the stress-strain relationship. The strain-driven
counterpart of negative compressibility transitions is a force amplification
phenomenon, where an increase in deformation induces a discontinuous increase
in response force. We suggest that the proposed materials could be useful for
the design of actuators, force amplifiers, micro-mechanical controls, and
protective devices.Comment: Supplementary information available at
http://www.nature.com/nmat/journal/v11/n7/abs/nmat3331.htm
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models
We present a one-loop calculation of the oblique S parameter within Higgsless
models of electroweak symmetry breaking and analyze the phenomenological
implications of the available electroweak precision data. We use the most
general effective Lagrangian with at most two derivatives, implementing the
chiral symmetry breaking SU(2)_L x SU(2)_R -> SU(2)_{L+R} with Goldstones,
gauge bosons and one multiplet of vector and axial-vector massive resonance
states. Using the dispersive representation of Peskin and Takeuchi and imposing
the short-distance constraints dictated by the operator product expansion, we
obtain S at the NLO in terms of a few resonance parameters. In
asymptotically-free gauge theories, the final result only depends on the
vector-resonance mass and requires M_V > 1.8 TeV (3.8 TeV) to satisfy the
experimental limits at the 3 \sigma (1\sigma) level; the axial state is always
heavier, we obtain M_A > 2.5 TeV (6.6 TeV) at 3\sigma (1\sigma). In
strongly-coupled models, such as walking or conformal technicolour, where the
second Weinberg sum rule does not apply, the vector and axial couplings are not
determined by the short-distance constraints; but one can still derive a lower
bound on S, provided the hierarchy M_V < M_A remains valid. Even in this less
constrained situation, we find that in order to satisfy the experimental limits
at 3\sigma one needs M_{V,A} > 1.8 TeV.Comment: 34 pages, 9 figures. Version published in JHEP. Some references and
sentences have been added to facilitate the discussio
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review
PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75.
This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
- …
