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Abstract. Reinforcement learning has shown great potential in gener-
alizing over raw sensory data using only a single neural network for value
optimization. There are several challenges in the current state-of-the-art
reinforcement learning algorithms that prevent them from converging to-
wards the global optima. It is likely that the solution to these problems
lies in short- and long-term planning, exploration and memory manage-
ment for reinforcement learning algorithms. Games are often used to
benchmark reinforcement learning algorithms as they provide a flexible,
reproducible, and easy to control environment. Regardless, few games
feature a state-space where results in exploration, memory, and plan-
ning are easily perceived. This paper presents The Dreaming Variational
Autoencoder (DVAE), a neural network based generative modeling archi-
tecture for exploration in environments with sparse feedback. We further
present Deep Maze, a novel and flexible maze engine that challenges
DVAE in partial and fully-observable state-spaces, long-horizon tasks,
and deterministic and stochastic problems. We show initial findings and
encourage further work in reinforcement learning driven by generative
exploration.
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1 Introduction

Reinforcement learning (RL) is a field of research that has quickly become one
of the most promising branches of machine learning algorithms to solve artificial
general intelligence [2,10,12,16]. There have been several breakthroughs in rein-
forcement learning in recent years for relatively simple environments [6,14,15,21],
but no algorithms are capable of human performance in situations where com-
plex policies must be learned. Due to this, a number of open research questions
remain in reinforcement learning. It is possible that many of the problems can
be resolved with algorithms that adequately accounts for planning, exploration,
and memory at different time-horizons.

In current state-of-the-art RL algorithms, long-horizon RL tasks are difficult
to master because there is as of yet no optimal exploration algorithm that is



capable of proper state-space pruning. Exploration strategies such as ε-greedy is
widely used in RL, but cannot find an adequate exploration/exploitation balance
without significant hyperparameter-tuning. Environment modeling is a promis-
ing exploration technique where the goal is for the model to imitate the behavior
of the target environment. This limits the required interaction with the target
environment, enabling nearly unlimited access to exploration without the cost
of exhausting the target environment. In addition to environment-modeling, a
balance between exploration and exploitation must be accounted for, and it is,
therefore, essential for the environment model to receive feedback from the RL
agent.

By combining the ideas of variational autoencoders with deep RL agents, we
find that it is possible for agents to learn optimal policies using only generated
training data samples. The approach is presented as the dreaming variational
autoencoder. We also show a new learning environment, Deep Maze, that aims
to bring a vast set of challenges for reinforcement learning algorithms and is the
environment used for testing the DVAE algorithm.

This paper is organized as follows. Section 3 briefly introduces the reader
to preliminaries. Section 4 proposes The Dreaming Variational Autoencoder for
environment modeling to improve exploration in RL. Section 5 introduces the
Deep Maze learning environment for exploration, planning and memory man-
agement research for reinforcement learning. Section 6 shows results in the Deep
Line Wars environment and that RL agents can be trained to navigate through
the deep maze environment using only artificial training data.

2 Related Work

In machine learning, the goal is to create an algorithm that is capable of con-
structing a model of some environment accurately. There is, however, little re-
search in game environment modeling in the scale we propose in this paper. The
primary focus of recent RL research has been on the value and policy aspect
of RL algorithm, while less attention has been put into perfecting environment
modeling methods.

In 2016, the work in [3] proposed a method of deducing the Markov Decision
Process (MDP) by introducing an adaptive exploration signal (pseudo-reward),
which was obtained using deep generative model. Their method was to compute
the Jacobian of each state and used it as the pseudo-reward when using deep
neural networks to learn the state-generalization.

Xiao et al. proposed in [22] the use of generative adversarial networks (GAN)
for model-based reinforcement learning. The goal was to utilize GAN for learning
dynamics of the environment in a short-horizon timespan and combine this with
the strength of far-horizon value iteration RL algorithms. The GAN architecture
proposed illustrated near authentic generated images giving comparable results
to [14].

In [9] Higgins et al. proposed DARLA, an architecture for modeling the
environment using β-VAE [8]. The trained model was used to extract the optimal



policy of the environment using algorithms such as DQN [15], A3C [13], and
Episodic Control [4]. DARLA is to the best of our knowledge, the first algorithm
to properly introduce learning without access to the target environment during
training.

Buesing et al. recently compared several methods of environment modeling,
showing that it is far better to model the state-space then to utilize Monte-
Carlo rollouts (RAR). The proposed architecture, state-space models (SSM) was
significantly faster and produced acceptable results compared to auto-regressive
(AR) methods. [5]

Ha and Schmidhuber proposed in [7] World Models, a novel architecture for
training RL algorithms using variational autoencoders. This paper showed that
agents could successfully learn the environment dynamics and use this as an
exploration technique requiring no interaction with the target domain.

3 Background

We base our work on the well-established theory of reinforcement learning and
formulate the problem as a MDP [20]. An MDP contains (S,A, T , r) pairs that
define the environment as a model. The state-space, S represents all possible
states while the action-space, A represents all available actions the agent can
perform in the environment. T denotes the transition function (T : S ×A → S),
which is a mapping from state st ∈ S and action at ∈ A to the future state
st+1. After each performed action, the environment dispatches a reward signal,
R : S → r.

We call a sequence of states and actions a trajectory denoted as
τ = (s0, a0, . . . , st, at) and the sequence is sampled through the use of a stochas-
tic policy that predicts the optimal action in any state: πθ(at|st), where π is
the policy and θ are the parameters. The primary goal of the reinforcement
learning is to reinforce good behavior. The algorithm should try to learn the
policy that maximizes the total expected discounted reward given by, J (π) =

E(st,at)∼p(π)
[∑T

i=0 γ
iR(si)

]
[15].

4 The Dreaming Variational Autoencoder

The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for
generating probable future states ŝt+n from an arbitrary state-space S using
state-action pairs explored prior to st+n and at+n.

The DVAE algorithm, seen in Figure 1 works as follows. First, the agent
collects experiences for utilizing experience-replay in the Run-Agent function. At
this stage, the agent explores the state-space guided by a Gaussian distributed
policy. The agent acts, observes, and stores the observations into the experience-
replay buffer D. After the agent reaches terminal state, the DVAE algorithm
encodes state-action pairs from the replay-buffer D into probable future states.
This is stored in the replay-buffer for artificial future-states D̂.
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Fig. 1. Illustration of the DVAE model. The model consumes state and action pairs,
yielding the input encoded in latent-space. Latent-space can then be decoded to a
probable future state. Q(z|X) is the encoder, zt is latent-space, and P(X|z) is the
decoder. DVAE can also use LSTM to better learn longer sequences in continuous
state-spaces.

Table 1. DVAE algorithm for generating states using Tθ versus the real transition func-
tion T . First, a real state is collected from the replay-memory. DVAE can then produce
new states from current the trajectory τ using the state-action pairs. θ represent the
trainable model parameters.

1 0 0 1 0 0
Real States

0 0
T (s0,Aright) 0 0

T (s1,Adown)
0 1

s0 s1 s2

0 1 0 0
Generated States N/A Tθ(s0,Aright, θ) 0 0

Tθ(ŝ1,Adown, θ) 0 1
ŝ1 ŝ2



Algorithm 1 The Dreaming Variational Autoencoder

1: Initialize replay memory D and ∧D to capacity N
2: Initialize policy πθ
3: function Run-Agent(T , D)
4: for i = 0 to N EPISODES do
5: Observe starting state, s0 ∼ N (0, 1)
6: while st not TERMINAL do
7: at ← πθ(st = s)
8: st+1, rt, terminalt ← T (st, at)
9: Store experience into replay buffer D(st, at, rt, st+1, terminalt)

10: st ← st+1

11: end while
12: end for
13: end function
14: Initialize encoder Q(z|X)
15: Initialize decoder P(X|z)
16: Initialize DVAE model Tθ = P(X|Q(z|X))
17: function DVAE
18: for di in D do
19: st, at, rt, st+1 ← di . Expand replay buffer pair
20: Xt ← st, at
21: zt ← Q(Xt) . Encode Xt into latent-space
22: ŝt+1 ← P(zt) . Decode zt into probable future state
23: Store experience into artificial replay buffer ∧D(ŝt, at, rt, ŝt+1, terminalt)
24: ŝt = ŝt+1

25: end for
26: return ∧D
27: end function



Table 1 illustrates how the algorithm can generate sequences of artificial
trajectories using Tθ = P(X|Q(z|X)), where z = Q(z|X) is the encoder, and
Tθ = P(X|z) is the decoder. With state s0 and action Aright as input, the
algorithm generates state ŝ1 which in the table can be observed is similar to
the real state s1. With the next input, Adown, the DVAE algorithm generates
the next state ŝ2 which again can be observed to be equal to s2. Note that
this is without ever observing state s1. Hence, the DVAE algorithm needs to be
initiated with a state, e.g. s0, and actions follows. It then generates (dreams)
next states,

The requirement is that the environment must be partially discovered so
that the algorithm can learn to behave similarly to the target environment. To
predict a trajectory of three timesteps, the algorithm does nesting to generate
the whole sequence: τ = ŝ1, a1, ŝ2, a2, ŝ3, a3 = Tθ(Tθ(Tθ(s0,Arnd),Arnd),Arnd).
The algorithm does this well in early on, but have difficulties with long sequences
beyond eight in continuous environments.

5 Environments

The DVAE algorithm was tested on two game environments. The first environ-
ment is Deep Line Wars [1], a simplified Real-Time Strategy game. We introduce
Deep Maze, a flexible environment with a wide range of challenges suited for re-
inforcement learning research.

5.1 The Deep Maze Environment

The Deep Maze is a flexible learning environment for controlled research in
exploration, planning, and memory for reinforcement learning algorithms. Maze
solving is a well-known problem, and is used heavily throughout the RL literature
[20], but is often limited to small and fully-observable scenarios. The Deep Maze
environment extends the maze problem to over 540 unique scenarios including
Partially-Observable Markov Decision Processes (POMDP). Figure 2 illustrates
a small subset of the available environments for Deep Maze, ranging from small-
scale MDP’s to large-scale POMDP’s. The Deep Maze further features custom
game mechanics such as relocated exits and dynamically changing mazes.

The game engine is modularized and has an API that enables a flexible
tool set for third-party scenarios. This extends the capabilities of Deep Maze to
support nearly all possible scenario combination in the realm of maze solving.1

State Representation RL agents depend on sensory input to evaluate and
predict the best action at current timestep. Preprocessing of data is essential so
that agents can extract features from the input. For this reason, Deep Maze has
built-in state representation for RGB Images, Grayscale Images, and raw state
matrices.
1 The Deep Maze is open-source and publicly available at https://github.com/CAIR/
deep-maze.

https://github.com/CAIR/deep-maze
https://github.com/CAIR/deep-maze


(a) A Small, Fully Observable MDP (b) A Large, Fully Observable MDP

(c) Partially Observable MDP having a vi-
sion distance of 3 tiles

(d) Partially Observable MDP having ray-
traced vision

Fig. 2. Overview of four distinct MDP scenarios using Deep Maze.



Scenario Setup The Deep Maze learning environment ships with four scenario
modes: (1) Normal, (2) POMDP, (3) Limited POMDP, and (4) Timed Limited
POMDP.

The first mode exposes a seed-based randomly generated maze where the
state-space is modeled as an MDP. The second mode narrows the state-space
observation to a configurable area around the player. In addition to radius based
vision, the POMDP mode also features ray-tracing vision that better mimic the
sight of a physical agent. The third and fourth mode is intended for memory
research where the agent must find the goal in a limited number of time-steps.
In addition to this, the agent is presented with the solution but fades after a few
initial time steps. The objective is the for the agent to remember the solution
to find the goal. All scenario setups have a variable map-size ranging between
2× 2 and 56× 56 tiles.

5.2 The Deep Line Wars Environment

The Deep Line Wars environment was first introduced in [1]. Deep Line Wars is
a real-time strategy environment that makes an extensive state-space reduction
to enable swift research in reinforcement learning for RTS games.

Fig. 3. The Graphical User Interface of the Deep Line Wars environment.

The game objective of Deep Line Wars is to invade the enemy player with
mercenary units until all health points are depleted, see Figure 3). For every
friendly unit that enters the far edge of the enemy base, the enemy health pool
is reduced by one. When a player purchases a mercenary unit, it spawns at
a random location inside the edge area of the buyers base. Mercenary units



automatically move towards the enemy base. To protect the base, players can
construct towers that shoot projectiles at the opponents mercenaries. When a
mercenary dies, a fair percentage of its gold value is awarded to the opponent.
When a player sends a unit, the income is increased by a percentage of the units
gold value. As a part of the income system, players gain gold at fixed intervals.

6 Experiments

6.1 Deep Maze Environment Modeling using DVAE

The DVAE algorithm must be able to generalize over many similar states to
model a vast state-space. DVAE aims to learn the transition function, bringing
the state from st to st+1 = T (st, at). We use the deep maze environment because
it provides simple rules, with a controllable state-space complexity. Also, we can
omit the importance of reward for some scenarios.

We trained the DVAE model on two No-Wall Deep Maze scenarios of size 2×2
and 8×8. For the encoder and decoder, we used the same convolution architecture
as proposed by [17] and trained for 5000 epochs for 8 × 8 and 1000 epochs for
2 × 2 respectively. For the encoding of actions and states, we concatenated the
flattened state-space and action-space, having a fully-connected layer with ReLU
activation before calculating the latent-space. We used the Adam optimizer [11]
with a learning-rate of 1e-08 to update the parameters.
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Fig. 4. The training loss for DVAE in the 2×2 No-Wall and 8×8 Deep Maze scenario.
The experiment is run for a total of 1000 (5000 for 8× 8) episodes. The algorithm only
trains on 50% of the state-space to the model for the 2×2 environment while the whole
state-space is trainable in the 8× 8 environment.

Figure 4 illustrates the loss of the DVAE algorithm in the No-Wall Deep
Maze scenario. In the 2× 2 scenario, DVAE is trained on only 50% of the state
space, which results in noticeable graphic artifacts in the prediction of future



states, see Figure 5. Because the 8 × 8 environment is fully visible, we see in
Figure 6 that the artifacts are exponentially reduced.

ŝt+1 ŝt+2 ŝt+3 ŝt+4 ŝt+5 ŝt+6 ŝt+7 ŝt+8 Right Down Left Up Down Right Up

Fig. 5. For the 2×2 scenario, only 50% of the environment is explored, leaving artifacts
on states where the model is uncertain of the transition function. In more extensive
examples, the player disappears, teleports or gets stuck in unexplored areas.

Table 2. Results of the deep maze 11 × 11 and 21 × 21 environment, comparing
DQN [15], TRPO [18], and PPO [19]. The optimal path yields performance of 100%
while no solution yields 0%. Each of the algorithms ran 10000 episodes for both map-
sizes. The last number represents at which episode the algorithm converged.

Algorithm Avg Performance 11× 11 Avg Performance 21× 21

DQN-∧D 94.56% @ 9314 64.36% @ N/A

TRPO-∧D 96.32% @ 5320 78.91% @ 7401

PPO-∧D 98.71% @ 3151 89.33% @ 7195

DQN-D 98.26% @ 4314 84.63% @ 8241

TRPO-D 99.32% @ 3320 92.11% @ 4120

PPO-D 99.35% @ 2453 96.41% @ 2904

6.2 Using ∧D for RL Agents in Deep Maze

The goal of this experiment is to observe the performance of RL agents using
the generated experience-replay ∧D from Figure 1 in Deep Maze environments of
size 11× 11 and 21× 21. In Table 2, we compare the performance of DQN [14],
TRPO [18], and PPO [19] using the DVAE generated ∧D to tune the parameters.

Figure 7 illustrates three maze variations of size 11 × 11, where the AI has
learned the optimal path. We see that the best performing algorithm, PPO [19]
beats DQN and TRPO using either ∧D or D. The DQN-∧D agent did not converge
in the 21 × 21 environment, but it is likely that value-based algorithms could
struggle with graphical artifacts generated from the DVAE algorithm. These
artifacts significantly increase the state-space so that direct-policy algorithms
could perform better.
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Fig. 6. Results of 8× 8 Deep Maze modeling using the DVAE algorithm. To simplify
the environment, no reward signal is received per iteration. The left caption describes
current state, st, while the right caption is the action performed to compute, st+1 =
T (st, at).

Text

Fig. 7. A typical deep maze of size 11× 11. The lower-right square indicates the goal
state, the dotted-line indicates the optimal path, while the final square represents the
player’s current position in the state-space. The controller agent is DQN, TRPO, and
PPO (from left to right).



6.3 Deep Line Wars Environment Modeling using DVAE

The DVAE algorithm works well in more complex environments, such as the
Deep Line Wars game environment [1]. Here, we expand the DVAE algorithm
with LSTM to improve the interpretation of animations, illustrated Figure 1.

Epoch 50                          Epoch 1 000                     Epoch 1 500

Epoch 2 000                    Epoch 2 500                     Epoch 3 000

Epoch 3 500                    Epoch 4 000                      Epoch 4 500

Epoch 5 000                     Epoch 5 500                     Epoch 6 000

Fig. 8. The DVAE algorithm applied to the Deep Line Wars environment. Each epoch
illustrates the quality of generated states in the game, where the left image is real state
s and the right image is the generated state ŝ.

Figure 8 illustrates the state quality during training of DVAE in a total of
6000 episodes (epochs). Both players draw actions from a Gaussian distributed
policy. The algorithm understands that the player units can be located in any
tiles after only 50 epochs, and at 1000 we observe the algorithm makes a more
accurate statement of the probability of unit locations (i.e., some units have
increased intensity). At the end of the training, the DVAE algorithm is to some
degree capable of determining both towers, and unit locations at any given time-
step during the game episode.



7 Conclusion and Future Work

This paper introduces the Dreaming Variational Autoencoder (DVAE) as a neu-
ral network based generative modeling architecture to enable exploration in envi-
ronments with sparse feedback. The DVAE shows promising results in modeling
simple non-continuous environments. For continuous environments, such as Deep
Line Wars, DVAE performs better using a recurrent neural network architecture
(LSTM) while it is sufficient to use only a sequential feed-forward architecture
to model non-continuous environments such as Chess, Go, and Deep Maze.

There are, however, several fundamental issues that limit DVAE from fully
modeling environments. In some situations, exploration may be a costly act that
makes it impossible to explore all parts of the environment in its entirety. DVAE
cannot accurately predict the outcome of unexplored areas of the state-space,
making the prediction blurry or false.

Reinforcement learning has many unresolved problems, and the hope is that
the Deep Maze learning environment can be a useful tool for future research.
For future work, we plan to expand the model to model the reward function
R̂ using inverse reinforcement learning. DVAE is an ongoing research question,
and the goal is that reinforcement learning algorithms could utilize this form of
dreaming to reduce the need for exploration in real environments.
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