28 research outputs found

    National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 – a prospective cohort study

    No full text
    Background There is a need for validated clinical risk scores to identify patients at risk of severe disease and to guide decision-making during the covid-19 pandemic. The National Early Warning Score 2 (NEWS2) is widely used in emergency medicine, but so far, no studies have evaluated its use in patients with covid-19. We aimed to study the performance of NEWS2 and compare commonly used clinical risk stratification tools at admission to predict risk of severe disease and in-hospital mortality in patients with covid-19. Methods This was a prospective cohort study in a public non-university general hospital in the Oslo area, Norway, including a cohort of all 66 patients hospitalised with confirmed SARS-CoV-2 infection from the start of the pandemic; 13 who died during hospital stay and 53 who were discharged alive. Data were collected consecutively from March 9th to April 27th 2020. The main outcome was the ability of the NEWS2 score and other clinical risk scores at emergency department admission to predict severe disease and in-hospital mortality in covid-19 patients. We calculated sensitivity and specificity with 95% confidence intervals (CIs) for NEWS2 scores ≥5 and ≥ 6, quick Sequential Organ Failure Assessment (qSOFA) score ≥ 2, ≥2 Systemic Inflammatory Response Syndrome (SIRS) criteria, and CRB-65 score ≥ 2. Areas under the curve (AUCs) for the clinical risk scores were compared using DeLong’s test. Results In total, 66 patients (mean age 67.9 years) were included. Of these, 23% developed severe disease. In-hospital mortality was 20%. Tachypnoea, hypoxemia and confusion at admission were more common in patients developing severe disease. A NEWS2 score ≥ 6 at admission predicted severe disease with 80.0% sensitivity and 84.3% specificity (Area Under the Curve (AUC) 0.822, 95% CI 0.690–0.953). NEWS2 was superior to qSOFA score ≥ 2 (AUC 0.624, 95% CI 0.446–0.810, p < 0.05) and other clinical risk scores for this purpose. Conclusion NEWS2 score at hospital admission predicted severe disease and in-hospital mortality, and was superior to other widely used clinical risk scores in patients with covid-19

    Additional file 2 of Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns

    Get PDF
    Additional file 2: Figure S2. Sequence alignment of 186 core structure nucleotides of myxomycete and ascomycete L2066 group I introns. Secondary structure paired segments (P1-P8) are shown above the alignment, and key segments are colour coded. Intron taxa sequences are indicated by species name abbreviations and GeneBank accession numbers

    Additional file 1 of Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns

    No full text
    Additional file 1: Figure S1. Consensus secondary structure diagrams of L2066 group I introns in myxomycetes and ascomycetes. a) Consensus structure in myxomycetes based on ca 250 nucleotide positions in the catalytic core common among introns from 16 taxa (see Table 1). Sequence size variations are noted in most peripheral regions, and homing endonuclease genes (HEGs) are found as P9 extensions. P1-P10 and P13, paired RNA segments; 5′ SS and 3′SS, exon-intron splice sites. Invariant nucleotide positions are shown as red uppercase letters. Black uppercase letter, > 90% conservation; lowercase letters, ≥ 50% conservation; filled circles, < 50% conservation. b) Consensus structure in ascomycetes based on ca 260 nucleotide positions in the catalytic core common among introns from 18 taxa (see Table 1)

    Local delivery of OX40L, CD80, and CD86 mRNA kindles global anticancer immunity

    No full text
    specific receptors on target cells in the tumor microenvironment. These locally induced responses may also have a systemic effect, clearing additional tumors throughout the body. In this study, to evoke systemic antitumor responses, we utilized charge-altering releasable transporters (CART) for local intratumoral delivery of mRNA coding for costimulatory and immune-modulating factors. Intratumoral injection of the CART–mRNA complexes resulted in mRNA expression at the site of administration, transfecting a substantial proportion of tumor-infiltrating dendritic cells, macrophages, and T cells in addition to the tumor cells, resulting in a local antitumor effect. Using a two-tumor model, we further show that mRNA therapy locally administered to one tumor stimulated a systemic antitumor response, curing both tumors. The combination of Ox40l-, Cd80-, and Cd86-encoding mRNA resulted in the local upregulation of proinflammatory cytokines, robust local T-cell activation, and migration of immune cells to local draining lymph node or to an anatomically distant tumor. This approach delayed tumor growth, facilitated tumor regression, and cured tumors in both A20 and CT26 tumor models. These results highlight mRNA-CART therapy as a viable approach to induce systemic antitumor immunity from a single localized injection

    Treatment of Cardiovascular Dysfunction with PDE3-Inhibitors in Moderate and Severe Hypothermia—Effects on Cellular Elimination of Cyclic Adenosine Monophosphate and Cyclic Guanosine Monophosphate

    Get PDF
    Introduction: Rewarming from accidental hypothermia is often complicated by hypothermia-induced cardiovascular dysfunction, which could lead to shock. Current guidelines do not recommend any pharmacological treatment at core temperatures below 30°C, due to lack of knowledge. However, previous in vivo studies have shown promising results when using phosphodiesterase 3 (PDE3) inhibitors, which possess the combined effects of supporting cardiac function and alleviating the peripheral vascular resistance through changes in cyclic nucleotide levels. This study therefore aims to investigate whether PDE3 inhibitors milrinone, amrinone, and levosimendan are able to modulate cyclic nucleotide regulation in hypothermic settings. Materials and methods: The effect of PDE3 inhibitors were studied by using recombinant phosphodiesterase enzymes and inverted erythrocyte membranes at six different temperatures—37°C, 34°C, 32°C, 28°C, 24°C, and 20°C- in order to evaluate the degree of enzymatic degradation, as well as measuring cellular efflux of both cAMP and cGMP. The resulting dose-response curves at every temperature were used to calculate IC50 and Ki values. Results: Milrinone IC50 and Ki values for cGMP efflux were significantly lower at 24°C (IC50: 8.62 ± 2.69 µM) and 20°C (IC50: 7.35 ± 3.51 µM), compared to 37°C (IC50: 22.84 ± 1.52 µM). There were no significant changes in IC50 and Ki values for enzymatic breakdown of cAMP and cGMP. Conclusion: Milrinone, amrinone and levosimendan, were all able to suppress enzymatic degradation and inhibit extrusion of cGMP and cAMP below 30°C. Our results show that these drugs have preserved effect on their target molecules during hypothermia, indicating that they could provide an important treatment option for hypothermia-induced cardiac dysfunction

    Integration of T helper and BCR signals governs enhanced plasma cell differentiation of memory B cells by regulation of CD45 phosphatase activity

    No full text
    Humoral immunity relies on the efficient differentiation of memory B cells (MBCs) into antibody-secreting cells (ASCs). T helper (Th) signals upregulate B cell receptor (BCR) signaling by potentiating Src family kinases through increasing CD45 phosphatase activity (CD45 PA). In this study, we show that high CD45 PA in MBCs enhances BCR signaling and is essential for their effective ASC differentiation. Mechanistically, Th signals upregulate CD45 PA through intensifying the surface binding of a CD45 ligand, Galectin-1. CD45 PA works as a sensor of T cell help and defines high-affinity germinal center (GC) plasma cell (PC) precursors characterized by IRF4 expression in vivo. Increasing T cell help in vitro results in an incremental CD45 PA increase and enhances ASC differentiation by facilitating effective induction of the transcription factors IRF4 and BLIMP1. This study connects Th signals with BCR signaling through Galectin-1-dependent regulation of CD45 PA and provides a mechanism for efficient ASC differentiation of MBCs
    corecore