7 research outputs found

    Comparative Phylogeography of Ethiopian anurans: Impact of the Great Rift Valley and Pleistocene Climate Change

    Full text link
    Background: The Ethiopian highlands are a biodiversity hotspot, split by the Great Rift Valley into two distinct systems of plateaus and mountains. The Rift Valley is currently hot and dry and acts as a barrier to gene flow for highland-adapted species. It is however unlikely that the conditions in the Rift were inhospitable to highland species during the entire Pleistocene. To assess the significance of the Ethiopian Rift as a biogeographic barrier as well as the impact Pleistocene climatic changes have had on the evolution of Ethiopian organisms, we performed phylogeographic analyses and developed present and past niche models on seven anuran species with different elevational and ecological preferences. Results: We found that highland species on the east and the west sides of the Rift are genetically differentiated and have not experienced any detectable gene flow for at least 0.4 my. In contrast, species found at elevations lower than 2500 m do not show any population structure. We also determined that highland species have lower effective population sizes than lowland species, which have experienced a large, yet gradual, demographic expansion, starting approximately half a million year ago. Conclusions: The pattern we report here is consistent with the increasingly warmer and drier conditions of the Pleistocene in East Africa, which resulted in the expansion of savanna, the fragmentation of forests and the shrinking of highland habitats. Climatic niche models indicated that the Rift is currently non suitable for most of the studied species, but it could have been a more permeable barrier during the Last Glacial Maximum. However, considering the strong genetic structure of highland species, we hypothesize that the barrier mechanisms at the Rift are not only climatic but also topographical

    The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities

    Full text link
    Nepal has an extreme altitudinal range from 60–8850m with heterogeneous topography and distinct climatic zones. The country is considered a biodiversity hotspot, with nearly a quarter of the land area located in protected areas. Nepal and the surrounding Himalayan region are particularly vulnerable to climate change because of their abrupt ecological and climatic transitions. Tens of millions of people rely on the region’s ecosystem services, and observed and modeled warming trends predict increased climate extremes in the Himalayas. To study the ecological impacts of climate change in Nepal and inform adaptation planning, we review the literature on past, present, and predicted future climatic changes and their impacts on ecological diversity in Nepal. We found few studies focusing on organisms, while research on species and communities was more common. Most studies document or predict species range shifts and changes in community composition. Results of these few investigations highlight major lacunae in research regarding the effects of changing climate on species comprising the Himalayan biota. Further empirical work is needed at all levels of biological organization to build on information regarding direct ecological impacts of climatic changes in the region. Countries face an ever-increasing threat of climate change, and Nepal has strong physiographic, elevational, and climatic gradients that could provide a useful model for studying the effects of climate change on a mountainous, and highly biodiverse, area

    A low cost approach to estimate demographic rates using inverse modeling

    No full text
    Rodriguez-Caro RC, Wiegand T, White ER, et al. A low cost approach to estimate demographic rates using inverse modeling. Biological Conservation. 2019;237:358-365.Survival is a key parameter in species' management and conservation. Most methods for estimating survival require time series data, large sample sizes and, overall, costly monitoring efforts. Inverse modeling approaches can be less data hungry, however they are underused in conservation sciences. Here we present an inverse modeling approach for estimating relative survival rates of long-lived species that is mathematically straightforward and evaluate its performance under constraints common in conservation studies related to small sample sizes. Specifically, we (i) estimated the relative survival rates in a Testudo graeca population based on one-year monitoring, (ii) assessed the impact of sample size on the accuracy, and (iii) tested alternative hypotheses on the impact of fire on the survival rates. We then compared the results of our approach with capture-recapture (CRC) estimates based on long-term monitoring. Our approach (153 individuals within a single year) yielded estimates of survival rates overlapping those of CRC estimates (11 years of data and 1009 individuals) for adults and subadults, but not for juveniles. Simulation experiments showed that our method provides robust estimates if sample size is above 100 individuals. The best models describing the impact of fire on survival identified by our approach predicts a decrease in survival especially in hatchlings and juvenile individuals, similar to CRC estimates. Our work proves that inverse modeling can decrease the cost for estimating demographic rates, especially for long-lived species and as such, its use should be encouraged in conservation and management sciences

    Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, double-blind, multicenter controlled trial.

    Full text link
    Maribavir is an oral benzimidazole riboside with potent in vitro activity against cytomegalovirus (CMV), including some CMV strains resistant to ganciclovir. In a randomized, double-blind, multicenter trial, the efficacy and safety of prophylactic oral maribavir (100 mg twice daily) for prevention of CMV disease were compared with oral ganciclovir (1000 mg three times daily) in 303 CMV-seronegative liver transplant recipients with CMV-seropositive donors (147 maribavir; 156 ganciclovir). Patients received study drug for up to 14 weeks and were monitored for CMV infection by blood surveillance tests and also for the development of CMV disease. The primary endpoint was Endpoint Committee (EC)-confirmed CMV disease within 6 months of transplantation. In a modified intent-to-treat analysis, the noninferiority of maribavir compared to oral ganciclovir for prevention of CMV disease was not established (12% with maribavir vs. 8% with ganciclovir: event rate difference of 0.041; 95% CI: -0.038, 0.119). Furthermore, significantly fewer ganciclovir patients had EC-confirmed CMV disease or CMV infection by pp65 antigenemia or CMV DNA PCR compared to maribavir patients at both 100 days (20% vs. 60%; p < 0.0001) and at 6 months (53% vs. 72%; p = 0.0053) after transplantation. Graft rejection, patient survival, and non-CMV infections were similar for maribavir and ganciclovir patients. Maribavir was well-tolerated and associated with fewer hematological adverse events than oral ganciclovir. At a dose of 100 mg twice daily, maribavir is safe but not adequate for prevention of CMV disease in liver transplant recipients at high risk for CMV disease
    corecore