15 research outputs found

    Cellular Markers of Active Disease and Cure in Different Forms of Leishmania infantum-Induced Disease

    Get PDF
    Increased numbers of peripheral blood mononucleocytes (PBMC) and increased IFN-γ secretion following in vitro challenge of blood samples with soluble Leishmania antigen (SLA), have been proposed as biomarkers of specific cell-mediated immunity, indicating that treatment of visceral leishmaniasis (VL) has been successful. However, Leishmania infantum infection may manifest as cutaneous leishmaniasis (CL), and less commonly as localized leishmanial lymphadenopathy (LLL) or mucosal leishmaniasis (ML). The present work examines the value of these biomarkers as indicators of cured leishmaniasis presenting in these different forms. Blood samples were collected before and after treatment from patients living in Fuenlabrada (Madrid, Spain), an L. infantum-endemic area recently the center of a leishmaniasis outbreak. All samples were subjected to Leishmania-specific PCR, serological tests (IFAT and rK39-ICT), and the SLA-cell proliferation assay (SLA-CPA), recording PBMC proliferation and the associated changes in IFN-γ production. Differences in the results recorded for the active and cured conditions were only significant for VL. PCR returned positive results in 67% of patients with active VL and in 3% of those with cured leishmaniasis. Similarly, rK39-ICT returned a positive result in 77% of active VL samples vs. 52% in cured VL samples, and IFAT in 90% vs. 56%; in the SLA-CPA, PBMC proliferation was seen in 16% vs. 90%, and an associated increase in IFN-γ production of 14 and 84%, respectively. The present findings reinforce the idea that PBMC proliferation and increased IFN-γ production in SLA-stimulated PBMC provide biomarkers of clinical cure in VL. Other tests are urgently needed to distinguish between the cured and active forms of the other types of clinical leishmaniasis caused by L. infantum

    Evaluation of the Leishmania inositol phosphorylceramide synthase as a drug target using a chemical and genetic approach

    Get PDF
    The lack of effective vaccines and the development of resistance to the current treatments highlights the urgent need for new antileishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major, and a potent antileishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. Whilst the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances outwith sphingolipid metabolism were identified. Furthermore, whilst deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrated that clemastine does inhibit LmxIPCS, and cause associated metabolic disturbances, but its primary target may lie elsewhere

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    No full text
    New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1) was examined in plasma from soluble Leishmania antigen (SLA)-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL), unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools

    IFN-γ, IL-2, IP-10, and MIG as Biomarkers of Exposure to Leishmania spp., and of Cure in Human Visceral Leishmaniasis

    No full text
    New biomarkers are needed for monitoring the effectiveness of treatment for visceral leishmaniasis (VL). They might also improve the detection of the asymptomatic population in Leishmania-endemic areas. This paper examines the IL-2, IFN-γ, IFN-γ-induced protein 10 (IP-10), and monokine-induced-by-IFN-γ (MIG) levels in whole blood—stimulated in vitro with soluble Leishmania antigen (SLA)—taken from asymptomatic individuals and patients treated for VL living in a post-outbreak (Leishmania infantum) area in Spain, and in an endemic (Leishmania donovani) area of Bangladesh. IP-10 was found to be an accurate global marker of asymptomatic subjects with positive cellular/humoral tests, while MIG was found to be a better marker of contact with L. donovani than IL-2 but no for those with L. infantum. Determining IP-10, MIG, and IFN-γ levels proved useful in monitoring the cellular immune response following treatment for active disease caused by L. infantum

    Evaluation of fluorimetry and direct visualization to interpret results of a loop-mediated isothermal amplification kit to detect Leishmania DNA

    Get PDF
    Abstract Background Nucleic acid amplification tests (NAATs) have proven to be advantageous in the diagnosis of leishmaniases, allowing sensitive diagnosis of: (i) cutaneous leishmaniasis in long duration lesions and (ii) visceral leishmaniasis using a less-invasive sample like peripheral blood, in opposition to tissue aspiration required for parasite demonstration by microscopy. Despite their benefits, the implementation of NAATs for leishmaniasis diagnosis at the point-of-care has not been achieved yet, mostly due to the complexity and logistical issues associated with PCR-based methods. Methods In this work, we have evaluated the performance of a ready-to-use loop-mediated isothermal amplification (LAMP) kit using two real time fluorimeters to amplify leishmanial DNA obtained by silica column-based and Boil & Spin protocols. Results The different approaches used to run and interpret the LAMP reactions showed a performance equivalent to PCR and real-time PCR, using spiked and clinical samples. The time to positivity obtained with real-time fluorimetry showed an excellent correlation with both Ct values and parasite load from real-time quantitative PCR. Conclusions The results obtained open the possibility of using a highly stable, ready-to-use LAMP kit for the accurate diagnosis of leishmaniasis at the point-of-care. Furthermore, the feasibility of relating time to positivity, determined with a portable real-time fluorimeter, with the parasite burden could have a wider application in the management of leishmaniasis, such as in treatment efficacy monitoring or as a pharmacodynamics tool in clinical trials

    Lymphoproliferative response after stimulation with soluble leishmania antigen (SLA) as a predictor of visceral leishmaniasis (VL) relapse in HIV+ patients.

    No full text
    The introduction of HAART resulted in the decrease of Leishmania/HIV co-infection cases; nevertheless, the number of relapses remains high and secondary prophylaxis is recommended. However, secondary prophylaxis is not necessary in all patients, and presents a high risk of toxicity and an elevated cost. Our aim was to study whether specific cellular response to Leishmania infantum (measured by cell proliferation response after stimulation with soluble Leishmania antigen (SLA)), could be a useful tool to attempt a secondary prophylaxis withdrawal. In June 2009 an outbreak of leishmaniasis by Leishmania infantum was declared in the southeast of Madrid, and since January 2013, we recruited 10 HIV+ patients that had been treated for visceral leishmaniasis. 6 patients had positive SLA-cell proliferation test. The mean CD4 cell counts of those patients with positive SLA were 140 cel/mm3 and 40 cel/mm3 in those with negative SLA test. 3 patients with positive SLA-cell proliferation test (CD4 count: 336, 307, 625) were not on prophylaxis, and the other 3 patients (CD4 count: 152, 189, 359) were on secondary prophylaxis that was withdrawn after the positive SLA-cell proliferation test with no posterior relapses (mean follow up 60 weeks). From the 4 patients, which had negative SLA-cell proliferation test and continued on prophylaxis, 3 had positive PCR for Leishmania at the end of the follow-up and 2 presented clinical relapses. The performance of SLA-cell proliferation test can be a useful tool that can permit us to try withdrawal of the prophylaxis in Leishmania/HIV co-infected patients with low CD4+ counts under clinical supervision, diminishing risk of toxicity and cost.This study received financial support from the ‘Red de Investigación Cooperativa en Enfermedades Tropicales (RICET + RD12/0018/0008), VI PN de I + D + I 2008–2011, ISCIII— Subdirección General de Redes y Centros de Investigación Cooperativa; y fondos FEDER, and from ISCIII-AES project Impact of leishmaniasis outbreak in the southwest of Madrid in the immunosuppressed population (PI13/00440). EC was supported by a research contract funded via VII PN I + D + I 2013–2016 and FEDER Funds (RICET RD12/0018/0003).S

    Evaluation of the Leishmania Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach

    No full text
    The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere
    corecore