58 research outputs found

    The Versatile Dioctadecyldimethylammonium Bromide

    Get PDF
    Dioctadecyldimethylammonium bromide (DODAB) is a quaternary ammonium surfactant (Quat) with interesting properties and applications. In this chapter, DODAB characteristics as compared to other Quats emphasize its self-assembly in aqueous solutions and the novel applications involving this useful cationic lipid so easily combined with biomolecules and interfaces to yield a wide range of novel uses in many fields such as delivery of drugs, vaccines and genes, design of nanoparticles, modification of interfaces, and many others yet to come

    Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Get PDF
    Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps

    Biomimetic Nanomaterials from the Assembly of Polymers, Lipids, and Surfactants

    Get PDF
    Nanostructured materials require evaluation at a molecular level to become controllable and useful in drug and vaccine delivery. Over the years self-assembled nanomaterials such as nanoparticles and thin films have been prepared, characterized and used for biomedical applications. In this review meaningful examples of biomimetic nanomaterials and their construction based on intermolecular interactions such as the electrostatic attraction or the hydrophobic effect will be discussed. Emphasis will be placed on the interactions between polymers, lipids, surfactants and surfaces leading to bioactive supramolecular assemblies such as nanoparticles and coatings. Among the important applications of the self-assembled nanostructures and films to be reviewed are their antimicrobial effect and their adjuvant activity for vaccine delivery

    Antimicrobial Biomimetics

    Get PDF
    A vast territory for research is open from mimicking the behaviour of microorganisms to defend themselves from competitors. Antibiotics secreted by bacteria or fungi can be copied to yield efficient molecules which are active against infectious diseases. On the other hand, nanotechnology provides novel techniques to probe and manipulate single atoms an

    The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate)

    Get PDF
    Abstract\ud \ud Background\ud Several cationic polymers exhibit a useful antimicrobial property, however the structure–activity relationship still requires a more complete investigation. The main objective of this work is the comparison between the antimicrobial activity and toxicity of free and immobilized poly (diallyldimethylammonium) chloride (PDDA) in biocompatible poly (methylmethacrylate) (PMMA) nanoparticles (NPs).\ud \ud \ud Results\ud NPs synthesis by emulsion polymerization is performed over a range of [PDDA] at two methylmethacrylate (MMA) concentrations. The PMMA/PDDA dispersions are characterized by dynamic light-scattering for sizing, polydispersity and zeta-potential analysis, scanning electron microscopy (SEM), plating plus colony forming unities (CFU) counting for determination of the minimal microbicidal concentrations (MMC) against Escherichia coli, Staphylococcus aureus and Candida albicans and hemolysis evaluation against mammalian erythrocytes. There is a high colloidal stability for the cationic PMMA/PDDA NPs over a range of [PDDA]. NPs diverse antimicrobial activity against the microorganisms reduces cell viability by eight-logs (E. coli), seven-logs (S. aureus) or two-logs (C. albicans). The NPs completely kill E. coli over a range of [PDDA] that are innocuous to the erythrocytes. Free PDDA antimicrobial activity is higher than the one observed for PDDA in the NPs. There is no PDDA induced-hemolysis at the MMC in contrast to the hemolytic effect of immobilized PDDA in the NPs. Hemolysis is higher than 15 % for immobilized PDDA at the MMC for S. aureus and C. albicans.\ud \ud \ud Conclusions\ud The mobility of the cationic antimicrobial polymer PDDA determines its access to the inner layers of the cell wall and the cell membrane, the major sites of PDDA antimicrobial action. PDDA freedom does matter for determining the antimicrobial activity at low PDDA concentrations and absence of hemolysis.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant 2011/00046-5), FAPESP (2012/24534-1)Conselho Nacional de Desenvolvimento Científico e Tecnólogico (CNPq) (Grants 470105/2010-0, 305178/20130, 448497/2014-0 and 302352/2014-7) is gratefully acknowledged. LMS and LDMC thank CNPq (148396/2013-5

    ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats

    Get PDF
    AngII (angiotensin II), ACE (angiotensin I-converting enzyme) and the AT(1) receptor (AngII type I receptor) are associated with the inflammatory process and microvascular dysfunction of AKI (acute kidney injury) induced by renal I/R (ischaemia/reperfusion). However, Ang-(1-7) [angiotensin-(1-7)], ACE2 (angiotensin I-converting enzyme 2) and the Mas receptor also play a role in renal disease models. Therefore, in the present study, we have examined the renal profile of Ang-(1-7), ACE2 and the Mas receptor in renal I/R and compared them with that of AngII, ACE and the AT(1) receptor. Male Wistar rats were submitted to left nephrectomy and ischaemia (45 min) followed by reperfusion (2 or 4 h) in the right kidney. At 4 h of reperfusion, renal AngII was increased (P < 0.01) and renal Ang-(1-7) was decreased substantially (P < 0.05), although plasma levels of both angiotensins were unchanged. in addition, renal I/R decreased the renal mRNA expression of renin (P < 0.05), AT(1) receptors (P < 0.001) and ACE2 (P < 0.05). At 2 and 4 h of reperfusion, renal ACE activity was reduced (P < 0.05). On the other hand, renal expression of the Mas receptor was greatly increased at 4 h of reperfusion (P < 0.01), which was confirmed by immunohistochemical and Western blot analysis. in conclusion, increased renal expression of the Mas receptor associated with changes in the RAS (renin-angiotensin-system)-related peptidases support an important role for the ACE2 Ang-(1-7) Mas axis in AKI.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Univ Fed Minas Gerais, Inst Biol Sci, Dept Physiol & Biophys, BR-31270901 Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04044020 São Paulo, SP, BrazilUniv Fed Minas Gerais, Dept Pathol, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Dept Microbiol, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Clin Pathol Unit COLTEC, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Dept Biochem, Inst Biol Sci, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Dept Pediat, Fac Med, BR-31270901 Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04044020 São Paulo, SP, BrazilCAPES: PRDEX2009CNPq: 8701480/1997-4FAPEMIG: CBS 2044/96Web of Scienc

    Evaluation of the potential association of SOHLH2 polymorphisms with non-obstructive azoospermia susceptibility in a large European population

    Get PDF
    Non-obstructive azoospermia (NOA) or spermatogenic failure is a complex disease with an important genetic component that causes infertility in men. Known genetic factors associated with NOA include AZF microdeletions of the Y chromosome or karyotype abnormalities; however, most causes of NOA are idiopathic. During the last decade, a large list of associations between single-nucleotide polymorphisms (SNP) and NOA have been reported. However, most of the genetic studies have been performed only in Asian populations. We aimed to evaluate whether the previously described association in Han Chinese between NOA and two SNPs of the SOHLH2 gene (involved in the spermatogenesis process) may also confer risk for NOA in a population of European ancestry. We genotyped a total of 551 NOA patients (218 from Portugal and 333 from Spain) and 1,050 fertile controls (226 from Portugal and 824 from Spain) for the genetic variants rs1328626 and rs6563386 using TaqMan assays. To test for association, we compared the allele and genotype frequencies between cases and controls using an additive model. A haplotype analysis and a meta-analysis using the inverse variance method with our data and those of the original Asian study were also performed. No statistically significant differences were observed in any of the analyses described above. Therefore, considering the high statistical power of our study, it is not likely that the two analysed SOHLH2 genetic variants are related with an increase susceptibility to NOA in the European population.info:eu-repo/semantics/publishedVersio

    The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst

    Get PDF
    Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot−1 h−1) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies

    Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome

    Get PDF
    Funding Information: Funding: This work was supported by the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (ref. PY20_00212, P20_00583), and the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. SAF2016–78722-R, PID2020–120157RB-I00) and the Proyectos I + D + i del Programa Operativo FEDER 2020 (ref. B-CTS-584-UGR20, B-CTS-260-UGR20). FDC was supported by the “Ramón y Cajal” program (ref. RYC-2014–16458), and LBC was supported by the Spanish Ministry of Economy and Competitiveness through the “Juan de la Cierva Incorporación” program (Grant ref. IJC2018– 038026-I, funded by MCIN/AEI/10.13039/501100011033), all of them including FEDER funds. AGJ was funded by MCIN/AEI/10.13039/501100011033 and FSE “El FSE invierte en tu futuro”(grant ref. FPU20/02926). SGM was funded by a previously mentioned project (ref. PY20_00212). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01–0145-FEDER-007274). AML is funded by the Portuguese Government through FCT (IF/01262/2014). PIM is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the Programa Operacional do Capital Humano. ToxOmics—Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Nova Medical School, Lisbon, is also partially supported by FCT (Projects: UID/BIM/00009/2013 and UIDB/UIDP/00009/2020). SLarriba received support from Instituto de Salud Carlos III (grant DTS18/00101], co-funded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe), and from “Generalitat de Catalunya” (grant 2017SGR191). SLarriba is sponsored by the “Researchers Consolidation Program” from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). This article is related to the Ph.D. Doctoral Thesis of Miriam Cerván-Martín (grant ref. BES-2017–081222 funded by MCIN/AEI/10.13039/501100011033 and FSE “El FSE invierte en tu futuro”). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.publishersversionpublishe
    corecore