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Abstract

Dioctadecyldimethylammonium bromide (DODAB) is a quaternary ammonium surfac-
tant (Quat) with interesting properties and applications. In this chapter, DODAB char-
acteristics as compared to other Quats emphasize its self-assembly in aqueous solutions 
and the novel applications involving this useful cationic lipid so easily combined with 
biomolecules and interfaces to yield a wide range of novel uses in many fields such as 
delivery of drugs, vaccines and genes, design of nanoparticles, modification of interfaces, 
and many others yet to come.

Keywords: quaternary ammonium surfactants, self-assembly in water, cationic lipid in 

novel applications

1. The quaternary ammonium surfactants (Quats)

The quaternary ammonium surfactants or “Quats” encompass many individual chemicals 

[1, 2]. They are present in thousands of end-use formulations, many of which are blends of 

various Quats [1]. Common uses include disinfection, detergency, fabric softening, antistatic, 

and wood preservation [2]. The chemical structure determines their chemical behavior and 

utility. Quats will be strongly cationic due to their quaternary and positively charged nitrogen 

able to attach to surfaces, both organic and inorganic [3]. With remarkable chemical stabil-

ity, they can exhibit long-lasting biocidal effects [4]. They attract anions, for example, soaps, 
detergents and hard water constituents, for example, carbonate and sulfate [5]. They are 

attracted by negatively charged cells such as bacteria or fungus and become attached to them 
eventually causing their cytoplasmic membrane to leak with membrane damages leading to 

antimicrobial effects [6–9]. Certain Quats will biodegrade and the biodegradability decreases 

with increase in their alkyl chain length [10, 11]. The degradation takes place via partitioning 

to sludge and processing by biodegradation. The complex Quats biodegradation occurs in 
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several steps and depends on the Quat chemical structure, Quat interactions with the sludge 

determining adsorption and desorption, microorganisms present in the sludge and the pres-

ence or absence of anions; alkylammonium surfactants chemically modified with biological 
moieties such as carbohydrates, amide, aminoacids or peptides were better degraded [12]. 

From the point of view of Quats synthesis, compounds bearing more than one positive charge 

were readily obtained at economical cost from compounds with at least two tertiary amines 

that could be readily quaternized; some of these displayed potent antibacterial and antibio-

film activity and did not trigger bacterial resistance systems as those from methicillin-resis-

tant Staphylococcus aureus (MRSA); mono-Quats and several bis-, tris- and tetra-Quats tested 

against bacteria within a few hundred generations yielded a lack of resistance for Quats of 

higher charge when compared to mono-Quats [13].

Quats chemical structure determines their self-assembly in water solution. The theory for the 

self-assembly of dilute surfactant solutions is well established and very successful [14, 15]. 

This theory applies also to Quats since their amphiphilic molecular nature includes polar 

and apolar regions in the same molecule. The theory relates the self-assembly in water solu-

tion with the geometric parameter v/al. The definition of v/al is given by v, the volume of the 
hydrocarbon region of the surfactant; a, the optimal head group area, and l, as the optimal 

hydrocarbon chain length related to its maximum extended length. One should notice that the 

nature and shape of the assemblies are intimately related to the v/al value. For instance, in the 

case of spherical micelles, v/al < 1/3 whereas for vesicles or bilayers, ½ < v/al ≤ 1. When bilayer 
vesicles are the desired structure, larger v is required as is the case of the double-chained 

surfactants. Single-chained surfactants and lower v are required for micellar structures. For 

example, a single-chained quaternary ammonium surfactant such as cetyltrimethylammo-

nium bromide (CTAB) has a lower v than the corresponding double-chained quaternary 

ammonium surfactant. The self-assembly of CTAB and dioctadecyldimethylammonium 

bromide [DODAB] from calculations for their respective geometric parameters predicts, as 

indeed observed, CTAB molecules assembling as micelles and DODAB molecules assembling 

as bilayers in water solutions.

Not only the molecular geometry of the Quats determines their assembly in water solu-

tion: specific counterion effects also do [16]. Counterion adsorption and Stern layer effects 
change the optimal headgroup area a. In general, counterions will adsorb to some extent to 

the surfactant headgroups. Specific interactions of a nonelectrostatic origin like dehydration 
or hydration of the surfactants, conformational changes in the surfactant headgroup, size 

of the adsorbed counterion are important because they determine the thickness of the Stern 

layer and the actual surface potential. Specific counterions can change the lateral interactions 
between surfactants in a micelle, monolayer or bilayer. By means of the direct force measure-

ment technique developed by Israelachvili [15] after depositing DODAB bilayers with the 

Langmuir-Blodgett technique on two molecularly smooth mica surfaces and bringing these 
surfaces together in an aqueous solution, the measurements of the interaction forces between 

the bilayers as a function of their separation a repulsive double-layer force are experienced. 

Fitting the measured double-layer force with theory allows the surface potential to be esti-
mated, from which the binding affinity of the ions can be determined [15]. Apart from the 
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repulsive double-layer interaction, the van der Waals interaction and possibly the ion-ion 

correlation interaction, which are both attractive, must be taken into account [17]. The 

interactions between bilayers of dihexadecyldimethylammonium acetate and bromide sur-

factants, which are soluble in water and adsorbed from solution as a bilayer onto the mica 

surfaces, were determined by Pashley and coworkers [18]. Marra employed the Langmuir-

Blodgett deposition technique for an insoluble surfactant like DODAB so that the solution 
did not contain any aggregates and the binding of anions to the quaternary ammonium 

headgroups would not depend sensitively on the precise length of the hydrocarbon tails 

[16]. The anions investigated bound to the headgroups following a lyotropic series where 

the least hydrated, smallest anions bound with highest affinity [16]. Lateral interactions 

between DODAB adjacent molecules in a monolayer at the air-water interface and inter-

actions between bilayers of DODAB surfactants exhibited a pronounced ion specificity. 
Large hydrated counterions like the fluoride, hydroxide, and acetate ions gave expanded 
monolayer compression isotherms. Fluoride, hydroxide, and acetate counterions did not 

bind to DODAB headgroups. Following the lyotropic series for anion sizes F-> C1-> Br-, the 

smaller the (hydrated) anion, the more contracted the monolayer [16]. For dioctadecyldi-

methylammonium (DODA) acetate, chloride or bromide, vesicle size and zeta-potentials 

were inversely related; an increase in the zeta-potential was accompanied by a decrease in 

vesicle size, in accordance with the self-assembly theory; DODA acetate bilayer vesicles 

had the largest, less tightly bound and more hydrated counterion and exhibited the smallest 

size in comparison with those obtained from the other DODA salts [19].

2. DODAB hybrid assemblies

DODAB remarkable interactive capability with opposite charges of silica particles [20–23], 

silicon wafers [24], polymeric particles [25–31]; polymer films [32–34], drugs [35–45], nucleic 

acids [31, 46], oligonucleotides [47–49], proteins [30, 50–54], peptides [9, 55–57], polyelectro-

lytes [8, 9, 36, 58, 59] and many other important surfaces, biological cells, molecules and nano-

structures [60–67] is at the root of DODAB popularity in the literature spanning a huge variety 

of subjects. Today (December 10th, 2016) a search in American Chemical Society, PubMed 

and Scopus databases retrieved 104, 140 and 1208 documents, respectively, quoting DODAB. 

Therefore, this review just gives an overview on DODAB recent possibilities, and many others 

have already appeared or are yet to come.

The interaction between DODAB and solid surfaces like silicon wafers depends on the charge 

density of the solid surface, which depends on the nature and concentration of bound coun-

terions and DODAB ability to displace them; the cation more tightly bound to the negatively 

charged surface solid surface should be Li+ that would be difficult to displace by the DODAB 
cation, in contrast to the loosely bound Cs+ with its large ion radius and low charge density. 

In summary, DODAB adsorption proceeded in accordance with charge density on the solid 

surface thus depending on nature and concentration of counterions and DODAB ability to dis-

place them; increasing the ionic strength increases silanol dissociation, surface charge  density, 
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and DODAB adsorption [24]. The effect of monovalent salt nature and concentration over 
a range of low ionic strengths (0–10 mM LiCl, NaCl, KCl, or CsCl) and at two different pH 
values (6.3 and 10.0) on DODAB adsorption onto flat SiO

2
 surfaces evaluated by in situ ellip-

sometry. This technique allowed precise evaluation of thin film thicknesses on very smooth 
solid surfaces such as those of silicon wafers. Thereby, DODAB adsorption isotherms of high 

affinity showed adsorption maxima consistent with bilayer deposition only around 10 mM 
monovalent salt at both pH values. In contrast, when pure water was the intervening medium, 
DODAB adsorption decreased substantially. The nature of counterion on the charged solid 

surface was also important to determine DODAB adsorption: at 10 mM CsCl or LiCl, the 

highest and the lowest affinity constants for DODAB adsorption onto SiO
2
 were, respectively, 

obtained [24]. This was understandable from the fact that DODAB adsorption onto the solid 

surface required as a first step the displacement and cation exchange at the solid surface. 
DODAB adsorption consistently followed the expected facility of cation exchange at the sur-

face required for DODAB adsorption. Figure 1 illustrates the effect of counterion nature and 

Figure 1. The effect of monovalent salt nature and concentration at 0 and 10 mM LiCl, NaCl, KCl, or CsCl and pH 6.3 or 
10.0 on the thickness of the DODAB adsorbed layer deposited from bilayer fragments onto flat SiO

2
 surfaces from in situ 

ellipsometry [24]. Reprinted with permission from Ref. [24]. Copyright (2006) American Chemical Society.
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concentration on DODAB adsorption from bilayer fragments (BF) onto silicon wafers as deter-

mined from in situ ellipsometry measurements [24].

The changes of the electrostatic repulsion between adjacent DODAB molecules in a bilayer as 

the one due to interaction with counterions or oppositely charged inorganic or organic species 

can drastically change the nature of DODAB assemblies. For example, monovalent salt at a 

moderate concentration was reported to induce fusion of DODAB bilayer fragments [68–71] 

with induction of hydrophobic defects at the bilayer-water interface [72]. When the electro-

static repulsion is high as in pure water or in the presence of low concentrations of poorly 

bound counterions, interdigitation represents a way of relaxing the intermolecular repulsion 

in the bilayer; adhesion between DODAB bilayers due to interdigitation between DODAB 

molecules in the bilayer [26], molecular dynamic simulations [73], differential scanning 
calorimetry (DSC), and X-ray scattering in the subgel state [74] further supported DODAB 

tendency to display hydrophobic moieties in its assemblies for relaxation of the electrostatic 

repulsion.

Other interesting instances refer to the formation of catanionic bilayers from DODAB and 

anionic oleosiloxanes [75] or oleic acid [76]; DODAB membrane fragments and fatty-acid 
esters of cyclosiloxanes formed dense multibilayered vesicles; the transformation took place 

once the ester groups hydrolyzed to yield carboxyl groups yielding the anionic silicone 

surfactant in situ and the catanionic system with DODAB. The oleo-silica compound was 

obtained via hydrosilylation of methyl undec-10-enoate with 1,3,5,7-tetra-methylcyclo-

tetrasiloxane (1). Flat DODAB/oleic acid bilayer sheets were obtained at about 1:1 molar 

ratios for DODAB/oleic acid binary dispersions; the relaxation of the electrostatic repulsion 

between DODAB molecules in the bilayer due to the incorporation of OA into DODAB 

bilayer decreased the membrane curvature and increased the aggregate size; introduc-

tion of the fatty acid around equimolar ratios led to flat DODAB/OA bilayer assemblies 
in the dispersions [76]. The electrostatic attraction between DODAB and anionic amphi-
philes decreased the mean area per molecule, increased the geometric parameter v/al, and 

increased the aggregate size similarly to the fusogenic effects reported upon increasing 
counterion concentration [68–72, 75, 76].

Figure 2 shows cryo-transmission electron micrographs (cryo-TEM) of vitrified DODAB 
bilayer fragments obtained by sonication of DODAB in water [77], unilamellar vesicles of 

about 200–400 nm obtained by vaporization of a DODAB chloroform solution in water at 

70 degrees centigrades (above the gel to liquid-crystalline phase transition temperature of 

the DODAB bilayer and above the chloroform boiling point) [78] and very large unilamellar 

DODAB vesicles from salt-induced fusion of DODAB bilayer fragments [68, 69].

Combinations of DODAB and dihexadecylphosphate (DHP) yielded miscible catanionic 
bilayers over a range of molar ratios, though DODAB and DHP miscibility in the bilayer 
domain was non-ideal [79]. For vesicles with DODAB as the predominant lipid, small sizes, 

high positive zeta potential, low main transition temperature, less angular structure, good 

stability, and high internal water compartment contrasted with similar properties deter-

mined for the DHP-rich vesicles; DODAB improved the bilayer fluidity of DHP vesicles both 
in the liquid-crystalline and in the rippled bilayer phases [79]. Interestingly, the reduction 
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of positive charges on the DODAB/DHP vesicles improved also the survival of mammalian 
cells in culture [79]. These results might become important for future drug/gene delivery 

applications.

Cholesterol has been suggested to play a role in stable vesicle formation by adjusting 

the molecular packing of the vesicular bilayer. The Langmuir monolayer approach with 

infrared reflection-absorption spectroscopy (IRRAS) elucidated the effects of cholesterol 
on molecular packing of double-chained cationic surfactants [80]. Combining cholesterol 

with DXDAB monolayers at the air-water interface (X meaning the hydrocarbon chain 

length) reduced desorption of DXDAB with short alkyl chains, for example, ditetradec-

yldimethylammonium bromide or dihexadecyldimethylammonium bromide, into the 

water sub-phase and condensed the DXDAB monolayers [80]. For the DODAB monolay-

ers, cholesterol had a dual effect inducing both order and disorder of the neighboring 
hydrocarbon chains; the flexible alkyl side-chain of cholesterol along with the correspond-

ing portion of neighboring hydrocarbon chains formed a fluidic region, counteracting the 
conformational order induced by the sterol ring of cholesterol interacting with the alkyl 

chains [80].

The effect of varying the molar proportion of DODAB and neutral dipalmitoylphosphati-
dylcholine (DPPC) in DODAB/DPPC vesicles revealed a high bilayer and coloidal stability 

Figure 2. DODAB dispersions in water solutions obtained by different dispersion methods. (a) Cryo-transmission 
electron micrographs (cryo-TEM) of vitrified DODAB bilayer fragments obtained by sonication of DODAB in water 
[77]. Reprinted with permission from Ref. [77]. Copyright (1995) American Chemical Society. (b) Transmission electron 

microscopy of electronically stained large unilamellar DODAB vesicles (200–400 nm mean diameter) from vaporization 

of a DODAB chloroform solution in water at 70°C [78]. Reprinted from Ref. [78]. Copyright (1983) with permission of 

Elsevier. (c) Transmission electron microscopy of electronically stained and very large micrometric unilamellar DODAB 

vesicles obtained by NaCl-induced fusion of DODAB bilayer fragments [69]. Reprinted from Ref. [69]. Copyright (1986) 

with permission of Elsevier.
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with good miscibility for the binary system and absence of phase separation at a molar pro-

portion equal to 1 [81]. The demixing and crystallization of DODAB/DPPC binary lipid sys-

tem were recently found to take place when DODAB or DPPC was dominant in the mixture 

(DPPC/DODAB = 1/2 or DPPC/DODAB = 2/1); when DODAB was no more than equimolar 

(e.g., DPPC/DODAB = 2/1 and 1/1), there was good miscibility in absence of DODAB crystal-

lization [82]. At high or low DODAB, DPPC molar proportions, phase separation occurred 

upon cooling so that gel domains rich in DODAB phase-separated from DPPC-DODAB 

domains or DPPC domains. This phase separation for the gels would mean demixing and 

crystallization originating DODAB-rich and DPPC-rich tilted gel separated domains upon 

incubation at low temperatures [82].

Figure 3 illustrates the development of interdigitated regions in the DODAB bilayer as pre-

dicted from molecular dynamics simulation at two instants in time [73].

Figure 3. Molecular dynamics simulations of the DODAB bilayer at two different instants in time: 0 (A) and 90 ns 
(B); DODAB molecules assembled as a conventional (A) or as an interdigitated bilayer (B) where the hydrophilic 

quaternary ammonium heads were represented as spheres, similarly to the bromide ions; the water molecules are 

displayed as small spheres [73]. Reprinted with permission from Ref. [73]. Copyright (2010) American Chemical 

Society.
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3. Novel applications for DODAB hybrid assemblies

Aqueous solubilization of water-insoluble materials is highly important for pharmaceuticals, 

detergency, emulsion polymerization, enhanced oil recovery, and textile dyeing. Among 

colloidal Self-assembled structures, micelles/vesicles are efficient solubilizers but the solu-

bilization properties of bilayers of vesicles are superior [83, 84]. A series of double-chained 

surfactants, with increasing chain length (C12–18) mixed with single chained dodecylethyldi-

methylammonium bromide (DODABB) solubilized curcumin thanks to hydrophobic-hydro-

phobic and electrostatic interactions with preservation of curcumin antioxidant activity in 

food [85].

Aiming at the production of nanoparticles (NPs) for drug delivery, DODAB has been very 

useful to harmonize oppositely charged polysaccharides such as carboxymethylcellulose [58] 

or hyaluronic acid [86] with hydrophobic drugs such as amphotericin B [36], indomethacin 

[45], and tocoferol (vitamin E) [86]. Carboxymethylcellulose/DODAB/indomethacin NPs were 

prepared by direct injection of DODAB/indomethacin ethanol solution into a carboxymethyl-

cellulose water solution [45]. Similarly, hyaluronate/soybean lecithin/DODAB/vitamin E NPs 

were prepared by direct injection of vitamin E/soybean lecithin/DODAB ethanol solution into 

hyaluronic acid water solution; further incorporation of these NPs in polymeric, bioadhe-

sive films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide 
(PEO) and polyvinylalcohol (PVA) represented an innovative treatment for skin wounds [86].

A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactoman-

nan biopolymers on DODAB liposome template created a LbL structure up to eight layers, 

evaluated using quartz crystal microbalance (QCM) and zeta potential analysis; these bilayer-
coated NPs increased up to five times the sustained release of epidermal growth factor (EGF) 
and could be useful for improving the release profile of low-stability drugs like EGF [87].

The approach of combining important biomolecules such as proteins or nucleic acids with 

DODAB and further stabilizing the hybrids with hydrophilic polymers has been very useful 

for several biomedical and biotechnological applications. For instance, the delivery of DNA 

plasmids or small interference RNA (siRNA) to cells requires nanocarrier stability after in 

vivo administration though too strong stabilization can decrease the carrier efficiency; after 
characterizing DODAB/monoolein/pDNA or siRNA lipoplexes [88, 89], the nanocarriers were 

pegylated and tested for stability in serum and gene silencing in cultured cancer cells with 

promising results: pegylation avoided siRNA dissociation from the nanocarriers in human 

serum and improved transfection efficiency [90]. Stable lipoplexes of small size (100–160 nm) 

with a positive surface charge (>+45 mV) were readily internalized by human non-small cell 

lung carcinoma (H1299) cells and were efficient in promoting gene silencing. Monolein had 
a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphati-

dylethanolamine (DOPE), but with much lower cytotoxicity [91]. More recently, the same 

DODAB/monolein system was used to incorporate cell wall surface proteins (CWSP) from 

Candida albicans aiming at the production of an antigen delivery system (ADS) for a potential 

vaccine against candidiasis; the system facilitated antigen uptake by dendritic cells in vitro 
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and induced higher levels of pro-inflammatory cytokines and opsonizing specific IgG anti-
bodies in serum of mice immunized subcutaneously [92].

DODAB was also used to treat spores of Bacillus subtilis aiming at gene gun delivery of DNA 

plasmids in mice; DODAB treated spores allowed efficient plasmid adsorption and could be 
loaded into biolistic cartridges and efficiently delivered into mice for induction of specific cel-
lular and antibody responses required for DNA vaccines in vivo [93].

For textile materials, sometimes modification of the wettability of hydrophobic surfaces is 
essential. For instance, DODAB adsorption to hydrophobic polypropylene (PP) thin films 
dramatically enhanced surface adsorption of different proteins from soybeans and repre-

sented a facile treatment to obtain PP-modified surfaces that were completely hydrophilic 
[94].

DODAB combinations with graphene enhanced adsorption of hydrophobic analytes and 

improved the design of novel sensors for phenolic compounds; graphene/DODAB films 
exhibited remarkable synergistic effects toward the oxidation of tetrabromobisphenol TBBPA, 
due to the greatly increased TBBPA accumulation in the film and magnitude of the peak cur-

rents detected by chronocoulometry [95]. In another interesting instance, immobilization of 

urease for urea biosensing was achieved employing a DODAB monolayer at the air-water 

interface and natural exopolysaccharides from microalgae in the aqueous subphase; both 

DODAB and polysaccharide provided an appropriate microenvironment for the enzyme, 

enhanced its adsorption in the monolayer and could be used for the production of films sup-

ported on solid substrates [96].

Interestingly, the anisotropic polymerization of DNA adsorbed to a DODAB monolayer at the 

air-water interface yielded a one-dimensionally assembled belt-shaped structure and a unimo-

lecular thickness for the polymerized DNA; thereby, the polymerization could be regulated in 

the two-dimensionally confined medium of the Langmuir-Blodgett film [97].

In another instance, DODAB monolayers allowed to ascertain the nanostructure of assembled 

oligonucleotides; two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence 

and a 21-mer with human telomeric sequence were end-labeled with fluorescent groups and 
their fluorescence spectra and G-quadruplex folding at DODAB monolayer interface were 
reported for the first time. Thanks to film balance measurements (pressure-area isotherms), 
the fluorescence spectra recording using a fiber optic accessory interfaced with a spectro-

fluorimeter and the DODAB monolayer, the fluorescence energy transfer efficiency of mono-

layer adsorbed probes increased significantly in the presence of sodium or potassium ion 
in subphase, which indicated that the probes retained their cation binding properties when 

adsorbed at the DODAB monolayer interface [98].

In the fields of antimicrobials and adjuvants for vaccines, DODAB has also been playing 
important roles. Biocompatible NPs of poly (methylmethacrylate) (PMMA) were synthe-

sized in the presence of DODAB and characterized by dynamic light scattering for siz-

ing, polydispersity and zeta potential analysis, scanning electron microscopy (SEM) for 

morphology  visualization, and plating plus colony-forming unities (CFU) counting for 
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the determination of antimicrobial activity; there was a high permanent load of DODAB 

in the NPs, and a remarkable antimicrobial activity of PMMA/DODAB NPs, which was 

much higher than the one determined for DODAB itself [61]. PMMA particles loaded with 

DODAB were thus obtained from particle synthesis by emulsion polymerization in the 

presence of DODAB, a facile, fast, low-cost approach to obtaining highly efficient anti-
microbial nanoparticles with a permanent DODAB load. Other hybrid DODAB assemblies 

with the antimicrobial peptide gramicidin (Gr) reunited the complementary antimicrobial 
properties of DODAB with those of the peptide [56]. DODAB dispersed as large closed bilayer 

vesicles (LV) or bilayer disks (BF) was added of gramicidin (Gr), which is an antimicrobial 
peptide assembling as channels in membranes, increasing their permeability toward cations 

and displaying high toxicity against mammalian cells; DODAB/Gr bilayers exhibited micro-

bicidal action and reduced cytotoxicity against eukaryotic cells [56]. The novel formulations 

were characterized by dynamic light scattering for sizes an zeta-potentials, leakage from large 
vesicles induced by transmembrane gramicidin pores with dissipation of osmotic gradients, 

determination of lytic effects on bacteria and plating plus viable bacteria counting over a 
range of DODAB and/or Gr concentrations [56]. Gr dimers reconstituted functional chan-

nels in LV and the insertion of these channels in DODAB bilayer increased the charge den-

sity for LV but did not affect charge density of BF, with Gr at the BF borders. DODAB/Gr 
combinations diminished the high peptide toxicity against Saccharomyces cerevisae and had 

the advantage of broadening the spectrum of antimicrobial activity for the combination 

by inducing Escherichia coli and Staphylococcus aureus lysis and bacterial death. Thereby, 

the cytotoxicity of the peptide against eukariotic cells was reduced, and the spectrum of 

antimicrobial activity was broadened since DODAB and Gr displayed complementary 
activities [56]. More recently, the PMMA/DODAB and DODAB/Gr antimicrobial systems 
revealed potential uses in food microbiology for killing important food-borne pathogens 

such as Escherichia coli, Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes 

[9].Nowadays, a large family of bacterial genes (generally termed quaternary ammonium 

genes) encode efflux pumps capable of expelling many Quat structures from bacterial cells, 
leading to a decrease in susceptibility to Quats [99]. Since bacteria will inevitably find ways 
of resisting the existing antibiotics and Quats, maybe hybrid assemblies of antimicrobials 

will prove strategical to overcome resistance. Table 1 shows some schematic representa-

tions of DODAB combinations with gramicidin [56] or biocompatible PMMA polymer in 

PMMA/DODAB nanoparticles [61]. Their antimicrobial effects against food-borne bacteria 
were summarized on Table 2 [9].

In vaccine development, adjuvants and immunostimulants have the important task of pre-

senting antigens to the immune system eliciting an amplified and antigen-specific immune 
response. Among the adjuvants, DODAB is especially important due to its biomimetic hybrid 

nanostructures with an outer DODAB coating or an inner DODAB core, which join the 

advantages of particles and lipids and permit a robust control over size-dependent immune 

responses in vivo. Recently, hybrid nanomaterials based on DODAB with potential for com-

bination with antigens and immunostimulants for vaccine development were reviewed [100]. 

For instance, in compositions with derivatives of the myco-bacterial cell wall component, 

the cord factor trehalose dimycolate (TDM), which is the most abundant glycolipid in the 

mycobacterial cell wall, DODAB yielded highly efficacious immunoadjuvant formulations 
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Assemblies Schematic representation References

DODAB BF [71, 77]

DODAB BF/Gr [9]

DODAB LV [71, 78]

DODAB LV/Gr [55, 56]

PMMA/DODAB [33, 61]

Table 1. Some DODAB supramolecular assemblies: DODAB bilayer fragments (BF) or large closed vesicles (LV), 

antimicrobial peptide gramicidin D (Gr) and its assemblies with DODAB BF or DODAB LV and DODAB molecules in 
PMMA biocompatible polymer.
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for tuberculosis vaccines able to induce cell-mediated immunoresponses against intracelular 

bacteria [101, 102]. In general, DODAB has been combined not only with antigens of interest 

but also with important immunostimulants such as oligonucleotides, glycolipids or lipopep-

tides [100].

DODAB-covered particles and DODAB bilayer fragments were often used as immunoadju-

vants since DODAB can both adsorb onto several hydrophobic or hydrophilic particles and 

present antigens (Ag) to elicit amplified immunoresponses [65]. The electrostatic attraction 
drives the adsorption of a cationic DODAB bilayer onto oppositely charged polystyrene sul-

fate (PSS) nanoparticles (NPs) over a range of particle sizes [25, 27]. Adsorption isotherms and 

electrokinetic properties of the covered particles show the deposition of DODAB onto silica 

or PSS particles at maximal adsorption [21, 22, 25, 27, 28]. At maximal adsorption, the area per 

DODAB molecule adsorbed onto PSS particles is 0.286 nm2, which is half of the usual area per 

monomer in DODAB monolayers at the air-water interface and suggests bilayer deposition 

onto the polystyrene surface; electrokinetic properties of the covered particles are very similar 

to those of DODAB vesicles [25]. The hydrodynamic diameter of particles in the particles/

DODAB mixtures increases 9–10 nm. A tiny concentration of 10-micromolar is required for 

bilayer coverage of 109 particles (300 nm diameter) per mL at sub-toxic DODAB concentra-

tions. DODAB toxicity against fibroblasts in cell culture becomes significant above 0.1 mM 
DODAB; there is 50% of cell death at 0.5 mM DODAB [103]. Lipid-covered NPs are useful for 

antigen presentation [30].

The mean molecular area of DODAB in a monolayer at the air-water interface is 0.6 nm2 [70]. 

For particles with 300 nm of mean diameter, the bilayer coverage of total surface area on 

5 × 109 particles/mL requires 10 μM DODAB only [30]. At this minute amount, the usual 

DODAB toxicity is not relevant. In contrast, DODAB vesicles used as immunoadjuvants 

over the millimolar range of DODAB concentrations may be toxic in vivo [52]. Antigen (Ag) 

adsorption to the PSS/DODAB assembly does not disturb the order of the particulate over a 

Assembly MBC in mM; mg/mL/reduction in log(CFU/mL)

E. coli S. enterica S. aureus L. monocytogenes

Gr 0.010; 0.019/0.3 0.010; 0.019/0.5 0.010; 0.019/2.1 0.005; 0.009/7.6

DODAB BF 0.063; 0.039/7.6 0.500; 0.316/1.3 0.063; 0.039/3.4 0.125; 0.079/7.8

DODAB BF/Gr 0.031; 0.019/7.5 0.250; 0.158/0.9 0.015; 0.010/3.8 0.125; 0.079/8.0

DODAB LV 0.015; 0.010/4.5 0.500; 0.316/0.7 0.015; 0.010/2.9 0.250; 0.158/5.7

DODAB LV/Gr 0.015; 0.010/4.6 0.500; 0.316/0.4 0.031; 0.019/2.7 0.063; 0.039/6.0

PMMA/DODAB NPs –; 2.500/2.2 –; 1.250/0.1 –; 5.000/3.1 –; 5.000/1.5

Minimal bactericidal concentrations (MBC) (in mM; mg/mL) and log of viability reduction at MBC for the cationic 

assemblies were determined against important food-borne pathogens. For DODAB/Gr combinations, the molar ratio 
was [Gr] = 0.1 [DODAB]. Adapted from Ref. [9].

Table 2. Antimicrobial activity of DODAB and some of its hybrid assemblies with the antimicrobial peptide gramicidin 

(Gr) or the biocompatible polymer PMMA.
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range of Ag concentrations; the PSS/DODAB system at 5 × 109 particles/mL accommodates 

well up to 25 μg/mL Ag with narrow size distributions for PSS/DODAB/Ag NPs over this 

range of Ag concentrations [30]. This homogeneity for the particle size in the dispersions 

yields low polydispersities determined by dynamic light scattering, inside the 0.05–0.10 range 
[30].

DODAB molecules ultrasonically dispersed in aqueous solution are nano-sized bilayer disks 

or bilayer fragments (BF); the electrostatic repulsion at low ionic strength keeps the BF sta-

ble in aqueous dispersions [39, 64]. DODAB BFs are antimicrobial agents [39, 43], carriers 

for hydrophobic drugs [104] and useful for the production of lipid-covered particles such as 

bilayer-coated sílica [22] or PSS [28]. DODAB BFs also present antigens to the immune system 

inducing cellular immune responses [54]. These open bilayers differ from their mother vesi-
cles by especial features. They do not respond to osmotic gradients because they do not have 

an inner aqueous compartment. They have a discoidal shape with disks exhibiting one bilayer 

thickness and both faces available to display antigens [54]. They have domains of fluid and 
gel lipid phases [105]. They solubilize hydrophobic molecules sometimes in contrast to their 

mother vesicles that do not do so as in the case of amphotericin B [104]. DODAB BF interact 

with proteins, oligonucleotides or DNA via both the hydrophobic effect and the electrostatic 
attraction at low ionic strength. Bovine serum albumin (BSA) purified 18/14 kDa antigens from 
Taenia crassiceps cysticerci (18/14-Tcra) or a recombinant heat-shock protein (hsp-18 kDa) from 

Mycobacterium leprae adsorb on DODAB BF [54]. DODAB BF/Ag NPs are stable over a range 

of DODAB and Ag concentrations; these ranges vary with the Ag nature and are different for 
different antigens [54]. The production of cytokines by lymph nodes (LN) cells of immunized 

mice in culture is important to determine the nature of immune response induced by PSS/

DODAB/Ag or DODAB BF/Ag. The mice  immunized with antigen alone, adjuvant/antigen or 

adjuvant alone provide LN cells in culture that produce different cytokines depending on Ag 
and adjuvant nature [54]. A sandwich kit enzyme-linked immunosorbent assay (ELISA) deter-

mines the analytical concentrations of the cytokines produced after reestimulating the cells in 

culture. The cytokines profile is rather different from immunization with the parasite and the  
bacterium antigens [54]. The high levels of IL-12 and IFN-gamma induced by PSS/DODAB/Ag 

and DODAB BF/Ag when Ag is hsp-18kDa shows that these adjuvants are useful for the 

design of subunit vaccines against intracelular bacteria. IL-12 and IFN-gamma are the most 

important cytokines in innate responses to intracellular bacteria such as M. leprae or tuber-

culosis; when Ag is 18/14-Tcra, there is an enhancement in production of IL-10 and Il-13 by 

LN cells elicited by DODAB BF/Ag. These cytokines are typically associated with responses 

to allergens and parasites such as helminths and mediate differentiation of CD4+-T cells into 
Th2 cells [106]. On the other hand, the Mycobacterium leprae antigen carried by DODAB BF or 

PSS/DODAB adjuvants elicits low levels of these cytokines. Responses are indeed different 
for the helminthes and the bacteria antigens and antigen-specific as they should be [54, 106].

IL-10 exerts an inhibitory effect on macrophages and dendritic cells by decreasing the produc-

tion of IL-12 and the expression of class II major histocompatibility complex (MHC) [106]. 

Macrophages and DCs also secrete IL-12 that induces T cells differentiation into Th1 and 
natural killer (NK) cells with increased IFN-gamma synthesis and cytotoxic activity. The 

adaptive immunity against intracellular bacteria is principally cell mediated and consists of 
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activation of macrophages by CD4+T cells as well as killing of infected cells by CD8+ cytotoxic 

T lymphocytes (CTL). Naïve CD4+ T cells may differentiate into distinct subsets, such as Th1 
and Th2 cells in response to different antigens.

Due to its chemical stability and low cost when compared to other natural or synthetic 

lipids, DODAB has been intensively investigated aiming at subunit vaccine design. Major 

problems of liposomal formulations based on DODAB are the high DODAB concentration 

(1–10 mM DODAB) and the large liposomes size [52, 106, 107]. Minimization of DODAB dose 

is required for administration in vivo. DODAB BF effectively present antigens at 0.1 mM 
DODAB only; supported DODAB bilayers on PSS or silica require even lower DODAB con-

centrations [22, 25, 30, 54]. The total surface area on the BF dispersion available for antigen 

association are much larger than the one for closed, large and sometimes multibilayered 

liposomes. Thus, the first advantage of DODAB BF, PSS/DODAB or silica/DODAB as adju-

vants would be the low DODAB concentration required for Ag presentation. The second 

advantage of BF is the nanosize. Depending on sonication power and time plus composition 

of the dispersing medium that determine colloidal stability, DODAB BF/Ag complexes have 

a few tenths of nanometers in size (40–80 nm). This size is effective for antigen delivery to 
antigen-presenting cells (APCs), generating potent and combined humoral and CD8+ T cell 

immunity [109–111]. Over a range of low DODAB and antigen concentrations ([DODAB] 

≤0.1 mM; 0.001–0.05 mg/mL antigen), adjuvant/antigen combinations were cationic, stable, 
homodisperse and immunogenic at low DODAB dose, low cost, low sizes for improved den-

dritic cells uptake, high chemical stability, prone to present several different antigens and 
displaying low or even absent cytotoxicity. They were remarkably superior to alum due to 

their ability to elicit the cellular Th1 immune response. Contrary to alum or DODAB LV 

(1–10 mM DODAB), local or systemic adverse effects in mice were completely absent over the 
0.1–0.01 mM DODAB range. Silica/DODAB, PSS/DODAB, and DODAB BF are available over 

the sub-200 nm range of sizes thus presenting potential also for design of mucosal vaccines. 

The third advantage of BF is the absence of depots at the site of injection, an inflammatory 
reaction that is not always desirable [54]. These depots occur for DODAB large vesicles (LV) 

and appear due to inflammatory responses at the site of injection [107, 108]. Similar sizes 

for adjuvant and adjuvant-antigen complexes evidenced that the antigens readily adsorbed 

and stabilized the adjuvant; conversely, the adjuvant also stabilized the antigens preventing 

antigen-antigen aggregation as often observed for protein-protein interactions [30, 54].

An important component of the early innate immune response to viruses and bacteria is 

IL-12 that enhances the IFN-gamma production and the development of Th1 cells; IL-12 is 

involved in the combat of infections by cell-mediated immunity, for example, leishmani-

asis [106]. Subunit vaccines against protozoa that survive within macrophages require as 

principal defense mechanism the cell-mediated immunity, particularly directed to macro-

phage activation by Th1 cell-derived cytokines. Immune responses to leishmaniasis against 

the parasite Leishmania donovani involve cell-mediated immune response of the Th1 type 

and CD4+ Th1 cells activation for killing phagocytosed parasites. Leishmania-specific Th1 
CD4+ T cells produce IFN-gamma, that activates macrophages to kill intracellular para-

sites. On the other hand, the parasite activates Th2 cells increasing their production of 

Th2 cytokines that suppress the activity of macrophages and increase parasite survival 
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[106]. Similarly, during the liver stages of malaria, CD8+ T cells kill infected hepatocytes 

and induce the secretion of IFN-gamma activating the production of nitric oxide and other 

agents by the hepatocytes for killing the parasites. IL-12 stimulates IFN-gamma produc-

tion inducing resistance to sporozoite challenge in rodents and non-human primates [106]. 

Il-12 also increases the cytotoxic activity of natural killer (NK) cells after viral infections 

thereby mediating the NK cell killing of virus-infected cells for combating the infection. 

Recombinant DNA vaccines expressing membrane and envelope of viral proteins may ben-

efit from the DODAB BF or PSS/DODAB adjuvants, which can also carry DNA [31] or 

oligonucleotides [49].

DNA sequences containing unmethylated CpG dinucleotide generate danger signals that 
are recognized by the immune system; they are typical of bacteria and viruses but rare in 

vertebrates activating cells that express Toll-like receptor 9 and induce an innate immune 

response characterized by the production of Th1 cytokines [112]. Both CpG and DODAB 
improve Th1 responses against antigens when used separately. DODAB BF/CpG presenting 
ovalbumin (OVA) also enhanced Th1 immune responses [50]. DODAB BF/CpG/OVA also 
did not result in any observable depot effect at the site of prime suggesting their direct action 
on the antigen presenting cells (APC) of the draining LN. Only NPs can specifically target 
LN-resident cells [113]. The interstitial flow convects sub-100 nm NPs into the draining lym-

phatic vessels; NPs are not trapped in the tissue interstitium. Nano-sizes allow direct LN tar-

geting without the use of specific ligands. In the LN, antigen-presenting cells (APCs) rapidly 
capture the NPs. A few reviews are available on DODAB applications for the development 

of novel hybrid assemblies useful as immunoadjuvants, gene or RNA carriers [114–118].
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