
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322394956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


10 

Antimicrobial Biomimetics 

Ana Maria Carmona-Ribeiro, Lilian Barbassa and Letícia Dias de Melo 
Biocolloids Lab, IQUSP, Universidade de São Paulo,  

Caixa Postal 26077, CEP05513-970 São Paulo SP  

Brazil  

1. Introduction      

A vast territory for research is open from mimicking the behaviour of microorganisms to 
defend themselves from competitors. Antibiotics secreted by bacteria or fungi can be copied 
to yield efficient molecules which are active against infectious diseases. On the other hand, 
nanotechnology provides novel techniques to probe and manipulate single atoms and 
molecules. Nanoparticles are finding a large variety of biomedical and pharmaceutical 
applications, since their size scale can be similar to that of biological molecules (e.g. proteins, 
DNA) and structures (e.g. viruses and bacteria). They are currently being used in imaging 
(El-Sayed et al., 2005), biosensing (Medintz et al.,2005), biomolecules immobilization 
(Carmona-Ribeiro, 2010a), gene and drug delivery (Carmona-Ribeiro, 2003; Carmona-
Ribeiro, 2010b) and vaccines (O´Hagan et al., 2000; Lincopan & Carmona-Ribeiro, 2009; 
Lincopan et al., 2009). They can also incorporate antimicrobial agents (antibiotics, metals, 
peptides, surfactants and lipids), can be the antimicrobial agent or used to produce 
antimicrobial devices. Antimicrobial agents found in Nature can sucessfully be copied for 
synthesis of novel biomimetic but synthetic compounds. In this review, synthetic cationic 
surfactants and lipids, natural and synthetic peptides or particles, and hybrid antimicrobial 
films are overviewed unraveling novel antimicrobial approaches against infectious diseases. 

2. Biofilms, antimicrobial films and surfaces 

2.1 Impregnation of materials and coatings with antimicrobials 
The minimal conditions required for life on a given material are the presence of water or wet 
air, with a little dissolved gas, mineral salts and organic molecules so that  in natural 
environments, biofilms can form on surfaces of materials (Lejeune, 2003). A biofilm is a 
structured consortium of bacteria embedded in a self-produced polymer matrix consisting 
of polysaccharide, protein and DNA. For human societies, the most detrimental property of 
surface-associated contaminants as biofilms is probably the expression of specific characters, 
such as increased resistance to detergents, disinfectants, antibiotics and immunological 
defenses (Hoiby et al., 2010). Many nosocomial infections are considered consequences of 
surface contaminations, since biofilms can be formed in indwelling medical devices and 
biomaterials, or even in equipments such as air conditioning and water-distribution 
networks (Mah & O´Toole, 2001; Hoiby et al., 2010). Besides, contaminated common hospital 
surfaces, such as door handles (Oie et al., 2002), stethoscopes (Cohen et al., 1997) and ward 
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fabrics and plastics (Neely & Maley, 2000) can act as reservoirs of potentially harmful 
microbes. Upon being touched, these contaminated surfaces could lead to the spread of 
infection and propagate the contamination to other surfaces and patients in the vicinity 
(Page et al., 2009). Moreover, the device-related infections are usually associated with 
increased morbidity, mortality and additional hospital cost to patient (Tamilvanan et al., 
2008). Antimicrobial films are required for packaging of food products, since microbial 
contaminations are responsible for enormous losses in food safety, conservation and shelf 
life (Cha & Chinnan, 2004; Dutta et al., 2009). Much effort has been devoted to the design of 
antimicrobial materials in form of particles, coatings or surfaces able to prevent surface 
contamination and/or erradicate the biofilm consortia (Tiller et al., 2001; Francolini et al., 
2004; Furno et al., 2004; Zivanovic et al., 2007; Pereira et al., 2008; Ye et al., 2008; Caro et al., 
2009; Avila-Sosa et al., 2010). 
The first combinations of dental cements and resins with antibiotic drugs were described in 
the fifties (Colton & Ehrlich, 1953) whereas resorbable or soluble polymeric carriers which 
could deliver active drugs directly at the site of infection started to be described in the late 
seventies (Kopecek, 1977; Arai et al., 2010; Campoccia et al., 2010; Feng et al., 2010; Noel et 
al., 2010). Control, eradication or inhibition of biofilms and surface-related contaminations 
included development of novel materials, ranging from synthetic (Park et al., 1998; Hirota et 
al., 2005; Jampala et al., 2008; Pereira et al., 2008; Bryaskova et al., 2010) to natural and 
biodegradable compounds (Zhang et al., 1994; Cha & Chinnan, 2004; Pranoto et al., 2005; 
Maizura et al., 2007; Noel et al., 2010). Local antibiotic delivery systems have been proposed 
as alternative therapies to typical prophylactic antibiotic dosing (Frank et al., 2005). The 
most common  drug carrier has been polymethylmethacrylate (PMMA) (McLaren, 2004; 
Nelson, 2004) but other materials could also be used as a local drug delivery system, 
especially in orthopaedic area, such as calcium sulfate (Heijink et al., 2006), collagen 
(Diefenbeck et al., 2006) and chitosan (Khor & Lim, 2003; Noel et al., 2010). 
Different strategies for producing active films or surfaces have been described as 
summarized in Figure 1. The layer-by-layer (LbL) deposition consists in a LbL assembly of 
multiple thin films based on intermolecular electrostatic, hydrogen bonding, and/or 
covalent interactions between film components (Decher, 1997; Cui et al., 2008; Picart, 2008; 
Dvoracek et al., 2009; Agarwal et al., 2010; Shukla et al., 2010; Kharlampieva et al., 2009). 
Among other coating techniques, LbL assembly has the advantage of being a gentle, 
aqueous assembly process with nanometer level control over the composition of the layers. 
For example, Shukla et al. (2010) assembled films on silicon substrates which were plasma 
etched and immediately immersed in a solution containing a cationic polyelectrolyte, then 
water rinsed and then submerged in the polyanion of choice for the particular architecture 
being constructed also followed by water rinse step. After this the substrate was immersed 
in water solution containing the cationic antimicrobial amine-terminated ponericin G1 
peptide and water rinsed again. Four deposition steps produced a tetralayered film with 
sucessive layers: (polycation/ polyanion/ ponericin G1/ polyanion)n, where n represents 
the number of deposited tetralayer repeats (Shukla et al., 2010). Another approach to 
produce antimicrobial films and coatings is the spin-coating technique (Pereira et al., 2008; 
Jausovec et al., 2008), which is based on the solubilization of polymer and antimicrobial 
compound in a volatile solvent, e.g. chloroform, followed by spin-coating of the solution on 
the surface of a glass slide or silicon wafer. The hybrid film is obtained from spinning and 
solvent evaporation (Pereira et al., 2008) (Figure 1). Graftings or covalent attachments of 
certain antimicrobial chemical moieties, such as pyridinium groups (Tiller et al., 2001) or 
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lysozyme (Caro et al., 2009) to surfaces can also be used to prepare antimicrobial materials. 
In an example of the plasma-enhanced method (Jampala et al., 2008), stainless steel 
substrates were pretreated with oxygen plasma and received a hexamethyldisiloxane layer.  
Residual gases were then pumped out and ethylene diamine plasma films deposited before 
substrate immersion in a hexyl bromide solution for deposition of the antimicrobial layer 
(Figure 1). 
 

LbL deposition 

 
Spin-coating 

Shukla 
et al., 
2010 
 

 
Grafting 

Pereira 
et al., 
2008 

 
 

Tiller et 
al., 2001 

Plasma-enhanced deposition 

 

Jampala 
et al., 
2008 

Fig. 1. Methods for casting antimicrobial films on surfaces. Adapted from Tiller et al., 2001; 
Pereira et al., 2008. Adapted with permission from Jampala et al., 2008. Copyright 2008 
American Chemical Society. Reprinted from Biomaterials, Shukla, A.; Fleming, K.E.; 
Chuang, H.F.; Chau, T.M.; Loose, C.R.; Stephanopoulos, G.N. & Hammond, P.T., 
Controlling the release of peptide antimicrobial agents from surfaces, 31, 2348-2357, 
Copyright (2010), with permission from Elsevier. 

Surfaces modified by liposomes have already been recognized as an interesting and 
promising delivery vehicle for active and passive drug targeting purposes (Catuogno & 
Jones, 2003; Pinto-Alphandary et al., 2000; Jones, 2005). Liposomes can either disrupt on 
adsorption or adsorb intact, or a combination of both processes can occur (Carmona-Ribeiro, 
1992; Carmona-Ribeiro & Lessa, 1999; Carmona-Ribeiro, 2003; Carmona-Ribeiro, 2010a,b). 
Hence, systems based on vesicles deposited on the surface of a biomedical device could limit 
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drug delivery to the area immediately surrounding the device, avoiding side effects in the 
rest of the organism (Vermette et al., 2002). Various strategies of liposome deposition on 
surfaces are available such as  immobilization by hydrophobic interactions, covalent linkage 
and specific binding (Brochu et al., 2004). Pasquardini et al. (2008) reported the prevention 
of bacterial adhesion and colonization of polymeric surfaces through the immobilization of 
liposomes on polystyrene material. The surface was functionalized based on the deposition 
of covalently coupled lipid structures from antibiotic loaded vesicles, using either 
deposition of cationic vesicles on negatively charged surfaces or formation of covalent 
linkages between functionalized lipids and amines enriched surfaces. The lipid film, which 
was deposited on the polymeric surface, was used for loading and delivering a specific 
active agent, which was rifampicin, in a cationic liposome, to Staphylococcus epidermidis 
(Pasquardini et al., 2008). An artificial bone scaffold combined with liposomes was recently 
developed for therapy and prevention of refractory bacterial infections (Zhu et al., 2010). 
The porous ǃ-tricalcium phosphate (ǃ-TCP) was combined with liposomal gentamicin to 
form a complex drug carrier, which could release an initial high dose of antibiotic from the 
matrix, and a further sustained release of free gentamicin from the liposome allowing 
treatment and prevention of post-operative osteomyelitis (Zhu et al., 2010). 
Pathogenic bacteria secrete virulence factors such as toxins and lipases that actively damage 
cell membranes and tissues around infected wounds, while nonpathogenic bacteria do not 
(or not at high concentration) (DiRita et al., 1991; Zhang & Austin, 2005). On this basis a 
‘smart’ wound dressing system modified with antimicrobials encapsulated on lipid vesicles 
was developed, which only released an encapsulated antimicrobial agent in the presence of 
pathogenic bacteria, without responding to commensal/harmless bacteria (Zhou et al., 
2010). The specificity towards pathogenic bacteria is particularly desirable given the 
importance of the normal microflora in providing a natural defense against infection (Tagg 
& Dierksen, 2003). Importantly, this would minimize the evolutionary pressure for the 
selection of antibiotic resistant microorganisms and prolong the efficacy and shelf life of the 
encapsulated antimicrobial (Hecker et al., 2003). Figure 2 illustrates this responsive 
antimicrobial system.  
 

   
Fig. 2. Responsive antimicrobial system based on liposomal encapsulation of antimicrobials 
and drug release triggered by toxin secretion from pathogenic bacteria. Adapted with 
permission from Zhou et al., 2010. Copyright 2010 America Chemical Society. 

Hydrogel matrices such as carbopol 940 or poly(ethylene glycol) gelatin incorporated 
liposomes improving the viscosity of the topical formulation and its retention time at the 
site of administration (Hosny, 2010). The bioadhesive properties of the gel ensured a 
sustained release of antibiotics from the liposomes. Alternatively, plain broad-spectrum 
antimicrobials, without any carriers, have been incorporated into devices (Tebbs & Elliott, 
1993; Bach et al., 1999; Donelli et al., 2002; Zalewska & Ginalska, 2009; Francolini & Donelli, 
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2010). The coating of device surfaces with one or two antimicrobial substances or entrapping 
of these agents within the device material are approaches often used to obtain devices with 
different antimicrobial spectra and durations of the antimicrobial effect (Donelli & 
Francolini, 2001; Darouiche, 2008; Zilberman & Elsner, 2008). These are eluted with the aim 
of preventing biofilm formation by killing early colonizing bacteria. However, sufficient 
antibiotic must be incorporated for the “user-lifetime” of the device, and such incorporation 
must not damage the properties of the material (Danese, 2002). The technique of delivery 
must guarantee a rapid release of the antibiotic from the carrier and local drug levels well 
above the minimal inhibitory concentration (MIC). The drug release must be restricted to a 
limited period of time to prevent development of resistant bacterial strains and bactericidal 
should be favoured over bacteriostatic antibiotics (Schmidmaier et al., 2006). One of the 
main drawbacks of most available antimicrobial-coated devices is the burst release of the 
adsorbed antibiotics in the first few hours, followed by a long-lasting phase of slow release 
at low concentrations (Munson et al., 2004). This behaviour can develop antimicrobial 
resistance (Danese, 2002).  
Antimicrobial polyurethane systems were developed containing two antibiotics, cefamandole 
nafate and rifampicin (RIF), selected by their action spectrum and their  functional groups to 
interact with the suitably functionalized polymer (Ruggeri et al., 2007). In other similar 
instances, polyethylene glycol (PEG) was used as a pore forming agent (Kim et al., 2000; Meier 
et al., 2004). Although PEG is biologically inactive, the channels formed inside the polymeric 
matrix facilitated drug flow. Hence antibiotics released from these antimicrobial polyurethane 
systems inhibited the bacterial growth and exhibited a synergistic action when both 
cefamandole nafate and rifampicin antibiotics were present. In particular, PEG10000-
containing polymer was active against the RIF-resistant Staphylococcus aureus strain up to 23 
days. These results suggest that the combined entrapping of antibiotics and pore formers in 
these novel polymer systems could be promising to prevent bacterial colonization (Ruggeri et 
al., 2007). Figure 3 illustrates the prevention of microbial colonization on such surfaces.  
 

 
Fig. 3. Colonization of cocci (in yellow) and bacillus (in blue) on bare (A) or antibiotics-
coated polyurethane surface (B). Adapted with permission from Ruggeri et al., 2007, Journal 
of Biomedical Materials Research, and from Francolini & Donelli, 2010, FEMS Immunology 
and Medical Microbiology. Copyright 2007 and 2010 John Wiley & Sons.   

Hybrid antimicrobial biomaterials with potential to be applied as orthopaedic implants were 
recently prepared through immobilization of aminoglycoside antibiotics (amikacin or 
gentamicin) on hydroxyapatite ceramics (HAp), showing activity against S. aureus, S. 

epidermidis, Pseudomonas aeruginosa and resistance to biofilm formation (Zalewska & 
Ginalska, 2009). In fact, polymeric materials from both natural and synthetic origins are 
widely recognized as carriers for effective delivery of antimicrobial agents to treat the 
infections associated with  orthopaedic implants. Resorbable polymeric materials such as 

BA
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polylactides (Mader et al., 1997; Schmidmaier et al., 2006), copolymers of lactide and 
glycolide (Mader et al., 1997; Ambrose et al., 2003), polycaprolactone (Burd et al., 2001; Le 
Rey et al., 2003), hydroxyapatite and glass ceramics (Saito et al., 2002; Makinen et al., 2005; 
Zalewska & Ginalska, 2009), calcium sulfate (Nelson et al., 2002), and fibrin sealant implants 
(Mader et al., 2002) have already been investigated for use as antibiotic delivery systems. 
Prevention and treatment of osteomyelitis, particularly associated with orthopaedic implant 
surgery, have been the focus of many studies, since in most surgical procedures that include 
the incorporation of implants, the tissue-implant surface is especially prone to microbial 
contamination. Degradable polymer implant coating with antibiotics have been developed 
(Schmidmaier et al., 2006). For local antibiotic therapy, titanium K-wires to be implanted 
into the medullary canals of rat tibiae were coated with poly(D,L-Lactide) (PDLLA) loaded 
with gentamicin. Thereby, the onset of infections was prevented in 80-90% of animals thus 
treated (Schmidmaier et al., 2006). Since the PDLLA coating degrades by hydrolysis within 
3−6 months of implantation with the products of degradation metabolized in the citric acid 
cycle (Hutmacher et al., 1996; Schmidmaier et al., 2001; Park et al., 2009), this local 
application of gentamicin from PDLLA-coated implants might support systemic antibiotic 
prophylaxis  preventing implant-associated osteomyelitis. 
Usnic acid as an alternative antimicrobial agent for device coating or impregnation has been 
loaded on polymer surfaces since it has the desirable properties of poor solubility in 
biological fluids and is not recomended for use in clinics for therapy. Polyurethanes 
adsorbed usnic acid and thereby there was inhibition of S. aureus biofilm formation 
(Francolini et al., 2004). Antiseptics have also been used to develop catheter materials (Brun-
Buisson et al., 2004; Ostendorf et al., 2005; Rupp et al., 2005). A hydrophilic catheter 
incorporated with iodine, leading to a polyvinylpyrrolidone-iodine complex on the inner 
and outer surfaces of the catheter inhibited adhesion of Staphylococcus spp., Escherichia coli, 
Pseudomonas aeruginosa and Candida albicans, during the time of iodine release (Jansen et al., 
1992). Catheters incorporated with benzalkonium chloride also demonstrated a long-lasting 
antimicrobial activity against Staphylococcus spp., Gram-negative bacteria and C. albicans 
(Tebbs & Elliott, 1994). A polyurethane-based catheter impregnated with minute amounts of 
the antiseptic chlorhexidine and silver sulfadiazine was developed (Heard et al., 1998). This 
catheter was firstly coated only on the external surface and exhibited antimicrobial 
properties for nearly 15 days. A second generation of chlorhexidine-silver sulfadiazine was  
coated both internally and externally, and exhibited enhanced chlorhexidine activity, with a 
marked decrease in the colonization on these catheters (Brun-Buisson et al., 2004; Ostenford 
et al., 2005; Rupp et al., 2005).  
Advantages of polymeric antimicrobial agents, when compared to conventional 
antimicrobial agents of low molecular weight, are their nonvolatile character, chemical 
stability, and low permeation through the skin of a man or animal. Thus, they may enhance 
the efficacy of some existing antimicrobial agents and minimize the environmental problems 
accompanying the residual toxicity of the agents, in addition to prolonging their lifetime 
(Akashi et al., 2001; Chen & Cooper, 2002; Gottenbos et al., 2002). Synthetic polymers with 
functional groups, especially when the functional group is a antimicrobial, active group, 
such as the quaternary nitrogen, are receiving considerable attention (Kenawy & Mahmoud, 
2003; Li et al., 2006; Pereira et al., 2008; Melo et al., 2010).  
Quaternary ammonium salts are commonly employed as disinfectants, and effective against 
a wide variety of Gram-positive and Gram-negative bacteria (Tapias et al., 1994; Campanhã 
et al., 1999; Gilbert & Moore, 2005; Carmona-Ribeiro et al., 2006). Various cationic and 
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antimicrobial architectures have been tested such as polyelectrolyte layers (Tiller et al., 2001; 
Thome et al., 2003; Codling et al., 2003; Cen et al., 2003; Li et al., 2006; Vieira & Carmona-
Ribeiro, 2008), hyperbranched dendrimers (Chen & Cooper, 2000; Chen & Cooper, 2002; 
Abid et al., 2010) and long-chained amphiphiles (Abel et al., 2002; Haldar et al., 2005). The 
deposition of organic monolayers onto solid surfaces containing quaternary ammonium 
groups has been shown to prevent deposition and growth of bacterial biofilms (Kugler et al., 
2005). Molecules with a net positive charge are able to kill microorganisms both in solution 
(Fidai et al., 1997; Friedrich et al., 2000) or upon attachment or adsorption to surfaces 
(Isquith et al., 1972; Endo et al., 1987; Tiller et al., 2001; Thome et al., 2003; Kugler et al., 2005; 
Pereira et al., 2008) or particles (Vieira et al., 2003; Vieira & Carmona-Ribeiro, 2008). 
Particularly interesting were the cationic liposomes (Tapias et al., 1994; Sicchierolli et al., 
1995; Campanhã et al., 1999) or cationic bilayer fragments composed solely of 
dioctadecyldimethylammonium bromide or DODAB due to their intrinsic microbicidal 
property  (Vieira & Carmona-Ribeiro, 2001; Lincopan et al., 2003; Lincopan et al., 2005).  
Polymeric bactericides are more potent than their monomeric counterparts (Kenawy et al., 
2007). Surfaces with cations deposited on them were shown to kill microbes upon contact in 
the 1980s (Speier & Malek, 1982) especially when treated with hydrophobic polycations 
(Klibanov, 2007). These cationic materials electrostatically attract a microorganism cell 
towards the treated surface, resulting in the puncturing of microbial cell envelope and 
subsequent cell death (Klibanov, 2007). Impregnation of polymers with quaternary 
ammonium compounds (QAC) was also achieved from deposition of alternate anionic and 
cationic polyelectrolyte layers where cetyltrimethylammonium bromide (CTAB) was the 
antimicrobial agent included in the cationic layer (Dvoracek et al., 2009). Films exposure to 
humidity allowed CTAB diffusion out of the film and bacterial growth inhibition in 
neighbouring regions. On silicon wafers, hybrid films, produced from spin-coating of a 
chloroformic solution of poly(methylmethacrylate) (PMMA) polymer and DODAB cationic 
lipid, exhibited remarkable antimicrobial activity against E. coli (Pereira et al., 2008). 
Antimicrobial PMMA/DODAB  films  are illustrated in Figure 4. 
 

 

 

 

Fig. 4. PMMA films impregnated with a quaternary ammonium (QAC) lipid DODAB kill E. 

coli  upon contact. In green, live, and in red, dead E. coli cells. Adapted with permission from 
Pereira et al., 2008. Copyright 2008 American Chemical Society. 

Polymers of pyridinium derivatives were highly effective against Gram-positive bacteria 
(Kawabata & Nishiguchi, 1988). Pyridinium derivatives with alkyl bromides were 
covalently attached to glass slides and designed to create surfaces that kill airborne bacteria 
on contact (Tiller et al., 2001). These surfaces were able to kill more than 90% of deposited S. 

aureus cells and more than 99% of deposited S. epidermidis, P. aeruginosa and E. coli cells in a 
dry state. The bacteria cells were sprayed onto the surfaces to simulate the deposition of 
airborne bacteria. These tethered amphipatic polycations, as well as polimyxin B and soluble 
cationic antimicrobials, probably share a similar mechanism of attacking bacteria, by 
displacing the divalent cations that hold together the negatively charged surface of the 
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DODAB 

 
PMMA  
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lipopolysaccharide network, thereby disrupting the outer membrane of Gram-negative 
bacteria. It is also possible that after destroying the outer membrane permeability barrier, 
the cationic groups of the tethered polymers further penetrate into the inner membrane, 
producing leakage (Vaara, 1992). Regarding Gram-positive bacteria, the action of 
immobilized polycations probably requires penetration of the cationic groups across the 
thick cell wall to reach the cytoplasmic membrane (Friedrich et al., 2000). Bromide salts of 
quaternized polyvinylpyridine (QPVP) with linear aliphatic chains of 2 and 5 carbon atoms 
were adsorbed onto silicon wafers, and lyzozyme molecules were adsorbed onto these 
polycations (Silva et al., 2009). The antimicrobial effect of lyzozyme bounded to the 
pyridinium derivative layers or to silicon wafers was evaluated with enzymatic assays using 
Micrococcus luteus. After 15 min of interaction with bacteria, pure QPVP with 5 carbons 
presented the best antimicrobial action, followed by pure QPVP with 2 carbons, mixtures of 
lyzozyme and QPVP with 5 carbons, pure lyzozyme and mixtures of QPVP with 2 carbons 
and the enzyme. When quaternary ammonium salts are linked to the polymer backbone by 
longer spacers, as in the case of QPVP with 5 carbons, their larger mobility favoured the 
biocidal effect. After one hour of interaction, all systems yielded 100% of death.  
Antimicrobial silver particles alone or in combination with other metals or elements, such as 
carbon or platinum (Ranucci et al., 2003) or copper (Mclean et al., 1993)  were also used to 
impregnate biomaterials (Davenas et al., 2002). Thin polymeric films prepared by the LbL 
method assembled oppositely charged polyelectrolytes, loaded with silver nanoparticles 
and presented differential cytotoxicity representing a good approach to manage microbial 
burden in wounds without impairment of wound healing (Agarwal et al., 2010). 
Impregnation of biodegradable polymer matrix with silver nanoparticles showed strong 
bactericidal effect against E. coli, S. aureus and P. aeruginosa (Bryaskova et al., 2010).  
Silver has also been extensively used for the development of infection-resistant catheters. 
Polyurethane catheters in which carbon, silver and platinum particles are incorporated led to 
an electrochemically driven release of silver ions in the outer and inner vicinities of the 
catheter surface, demonstrating low catheter-related bloodstream infections (Ranucci et al., 
2003). Silver-containing zeolite compounds received approval of Food and Drug 
Administration (FDA) for being used as food contact surfaces (Joerger, 2007). Silver-zeolites 
have already been incorporated into polymeric films yielding antimicrobial properties 
(Kamisoglu et al., 2008; Zampino et al., 2008; Fernández et al., 2010). Polymer composites of 
plasticized poly(vinylchloride) pellets with silver zeolites demonstrated activity against S. 

epidermidis and E. coli (Zampino et al., 2008), while  polyurethane composites with silver 
zeolites showed antimicrobial action against E. coli (Kamisoglu et al., 2008) and polylactid acid-
polylactide (PLA)/silver zeolite composites also presented activity against S. aureus and E. coli, 
with silver being effectively released from the films (Fernández et al., 2010). The silver-
containing materials usually rely on the diffusion of Ag+ ions from the material and their 
subsequent action on adherent microbes as broad spectrum antimicrobials (Lansdown, 2006). 

2.2 Coatings with covalent modifications   
The surfaces of medical devices can be simply modified with the application of external 
coating substances onto them. Thereby, alterations of material surfaces may lead to changes 
in specific and non-specific interactions with microorganisms and, thus, reduce microbial 
adherence. Medical devices made out of a material that would be antiadhesive or at least 
colonization resistant would be the most suitable candidates to avoid colonization and 
subsequent infection (Duran, 2000; Chandra et al., 2005; Hou et al., 2007).  
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One possible approach to inhibit microbial contamination of surfaces is to prepare a surface 
to which microbes find it hard to become attached. This is a preventive strategy, where the 
aim is to prevent microbial adhesion to the surface in the first place (Page et al., 2009). One 
well established method for preventing the adhesion of microbes, proteins and mammalian 
cells to surfaces is to coat them with a layer of poly(ethylene glycol) (PEG) (Page et al., 2009). 
PEG modification of polyurethane surfaces inhibited microbial adhesion (Park et al., 1998; 
Ostuni et al., 2001; Hou et al., 2007). The current method involves the deposition of a self-
assembled monolayer, over a substrate, followed by functionalization of the monolayer with 
PEG. PEG polymeric surfaces are antimicrobial firstly because of the steric repulsion 
between PEG and the microbial cell envelope. The dynamic movement of PEG chains 
tethered to the surface, coupled with their lack of binding sites further hamper microbe 
adhesion (Page et al., 2009). For protecting stainless steel surfaces against protein and/or 
bacterial adhesion, thin films including the glycosidase hen egg white lysozyme (HEWL) 
and/or PEG were covalently bound to flat substrates pretreated with poly(ethylene imine) 
(PEI) (Caro et al., 2009). The ability of these modified surfaces to prevent protein adsorption 
and bacterial adhesion together with their biocide properties were tested employing bovine 
serum albumin (BSA), and the bacteria Listeria ivanovii and Micrococcus luteus. The cografting 
of PEG and HEWL resulted in a surface with both antiadhesive and antibacterial properties 
(Caro et al., 2009). Figure 5 illustrates these antiadhesive and antibacterial surfaces grafted 
with HEWL and PEG. 
 

 
Fig. 5. Antiadhesive and antibacterial surfaces on stainless steel (SS) with graftings of 
poly(ethylene glycol) (PEG) or hen egg white lyzozyme (HEWL). Adapted with permission 
from Caro et al., 2009. Copyright 2009 American Chemical Society. 

Inhibition of C. albicans biofilm formation was achieved by adding 6% polyethylene oxide 
(PEO) to polyurethane surfaces (Chandra et al., 2005). Similarly, biofilm formation by C. 

albicans and Candida tropicalis was inhibited on a silicone rubber voice prosthesis treated 
with a colloidal palladium/tin solution (resulting in a thin metal coat) (Dijk et al., 2000). On 
similar surfaces of hydrophobic polyurethanes modified with hydrophilic polyethylene 
oxide, adhesion of S. epidermidis was abolished (Patel et al., 2003; Patel et al., 2007). These 
modified surfaces significantly inhibited S. epidermidis biofilm formation over 48 h in vitro 
(Patel et al., 2007). 
Polymers with zwitterionic head groups were also applied as surface coatings, preventing 
microbial contamination on surfaces. The zwitterionic nature of the polymer head group 
mimics that found in the lipid bilayer of biological membranes imparting biocompatibility 
and non-thrombogenic character to these materials. Several examples of this concept are 
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available from the literature such as polymers based on phosphorylcholine (Lewis, 2000; 
Rose et al., 2005; Hirota et al., 2005), sulfobetain and carboxybetaine (Cheng et al., 2007). The 
zwitterionic head groups increased hydrophilicity of the material, leading to reversible 
interactions between incident microbes and the surface and discouraging adhesion of cells, 
both mammalian and microbial (Cheng et al., 2007). Similarly, surfaces containing 
immobilized long-chain N-alkylated polyvinylpyridines and structurally unrelated N-
alkylated polyethylenimines were reported to be lethal to S. aureus, S. epidermidis, P. 

aeruginosa and E. coli  (Lin et al., 2002). The structure-activity analysis revealed that for 
surfaces to be bactericidal, the immobilized long polymeric chains have to be hydrophobic, 
but not excessively so, and positively charged. 
Grafted or smeared on the surface, surfactants or polymers carrying electric charges could 
also modify the physico-chemical properties of the interface and decrease the binding ability 
of the colonizing organisms (Mireles et al., 2001). Synthetic vascular grafts such as 
polytetrafluoroethylene (PFTE) prostheses are easily accessible to pathogens after inserted 
into the patient. The lipophilicity of these PTFE grafts has been modulated with 
benzalkonium chloride (Harvey & Greco, 1981; Greco et al., 1982) or 
tridodecylmethylammonium chloride (Harvey et al., 1982), or incorporating drugs into 
biodegradable polymer carriers (Gollwitzer et al., 2003). Recently, new lipid-based 
formulations to incorporate antibiotics for anti-infective action in grafts were developed. In 
this case, PFTE grafts were coated with lipophilic agents such as poly-lactid acid or 
tocopherol acetate as carriers for gentamicin and teicoplanin, in order to release high drug 
concentrations locally and completely inhibit bacterial colonization on the implant (Matl et 
al., 2008). A recent study also reported the covalent attachment of quaternary ammonium 
groups to stainless steel and porous filter paper (cellulose) surfaces, through low-pressure 
plasma-enhanced functionalization (Jampala et al., 2008). The grafting of quaternary 
ammonium groups on these surfaces yielded stable and very efficient bactericidal 
properties, with activity against S. aureus and Klebsiella pneumoniae. 
Another different and recent approach is the concept of modifying a surface with 
bacteriophages, in order to produce an antimicrobial surface (Curtin & Donlan, 2006). 
Bacteriophages are viruses that infect prokaryotic cells, which contain a core nucleic acid, 
usually double-stranded DNA (dsDNA), within a protein or lipoprotein capsid (Guttman et 
al., 2004; Hanlon, 2007). As obligate parasites of bacteria, the bacteriophages bind to 
microbial surfaces, injecting their genetic material and replicating within the bacterial host. 
If phage replication is a lytic process, it will result in the lysis of the host cell (Sulakvelidze et 
al., 2001). The characteristics of lytic phages, such as target specificity, rapid bacterial killing, 
and amplification at the site of infection, make them  possible candidates as antimicrobial 
therapeutic agents (Deresinski, 2009). A phage-modified surface is certainly an interesting 
antimicrobial approach, especially because microorganisms currently resistant to antibiotics 
do not show resistance to phages. However, a few problems have to be considered. Firstly, 
the inherent specificity of phages to bacterial species, and further, bacteria can become 
resistant to phages (Stone, 2002). Thus, phage-treated surfaces should constantly be 
monitored. One study demonstrated the successful use of a developed wound dressing, 
containing lytic bacteriophages, to treat some skin infections that were not responding to 
conventional antimicrobial therapy (Stone, 2002). A biodegradable polymer wound dressing 
impregnated with ciprofloxacin, benzocaine, chymotrypsin, bicarbonate, and 6 lytic phages 
(Pyophage) with activity against P. aeruginosa, S. aureus, E. coli, Streptococcus spp. and Proteus 
spp. was also reported (Markoishvili et al., 2002). Another research showed the action of 

www.intechopen.com



Antimicrobial Biomimetics   

 

237 

catheters pre-treated with a coagulase-negative staphylococci phage reducing significantly 
S. epidermidis biofilm formation (Curtin & Donlan, 2006). Finally, the use of bacteriophages 
has been recently reported as a promising approach in the control of S. epidermidis and P. 

aeruginosa biofilm formation when catheters are pretreated with a cocktail of bacteriophages, 
thus reducing the 48-h mean biofilm cell density by 99.9%, even if few biofilm isolates were 
reported to be resistant to these phages (Fu et al., 2010). Approximate 90% reduction in both 
Proteus mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when 
compared with untreated controls followed impregnation of hydrogel-coated catheter 
sections with a lytic bacteriophage (Carson et al., 2010). 

2.3 Biodegradable antimicrobial materials 
There has been a growing interest over the past few years in applications of biopolymers 
due to their renewable, sustainable and biodegradable properties (Zivanovic et al., 2007). 
One of the most popular biopolymers is chitosan. Chitosan is a cationic biopolymer obtained 
by N-deacetylation of chitin, which is known to be the second most abundant biopolymer in 
nature and is the major component of exoskeleton of crustaceans (Roberts & Wood, 2000). 
This biopolymer has been found to be nontoxic, biodegradable, biocompatible in addition to 
having antimicrobial characteristics (Park et al., 2002; Jayakumar et al., 2007). In view of 
these qualities, chitosan films have been used as a packaging material for the quality 
preservation of a variety of food products (Park et al., 2004). Blending of chitosan and 
polyethylene oxide (PEO) produced films with  good antimicrobial effect against E. coli 
(Zivanovic et al., 2007). Chitosan-based films have the potential to be used in the food 
industry as active packaging materials to inhibit food-borne pathogens and in the 
pharmaceutical industry for controlled release of active compounds (Zivanovic et al., 2007; 
Noel et al., 2010).  
Different theories have been put forward to explain the antimicrobial mode of action of 
chitosan such as chitosan interaction with intracellular targets, eg DNA (Rabea et al., 2003), 
chitosan chelating activity (Rabea et al., 2003) or chitosan perturbation of the cell membrane 
(Helander et al., 2001; Zakrzewska et al., 2005; Je & Kim, 2006). Others considered that a 
sequence of rather “untargeted” molecular events would take place simultaneously or 
successively. The initial contact between the polycationic chitosan macromolecule and the 
negatively charged cell wall polymers driven by electrostatic interaction between chitosan 
and teichoic acids in the cell wall would disrupt the equilibrium of cell wall dynamics, and 
cause ultimate cell death (Raafat et al., 2008). 
Bioactive chitosan films can incorporate other antimicrobial agents, enabling to improve its 
antimicrobial efficacy (Quintavalla & Vicini 2002). A degradable chitosan sponge was  
loaded with the antibiotics amikacin or vancomycin for therapy after a traumatic injury or 
surgery with sustained release of the antibiotics for 72 hours, representing very high release 
levels needed for preventing early-stage infection (Noel et al., 2010). Chitosan-coated plastic 
films, alone or loaded with antimicrobial agents, were evaluated for their effect against 
Listeria monocytogenes, a food-borne pathogen with ability to survive and grow at 
refrigeration temperatures, tolerant to relatively high concentrations of salt and able to cause 
high fatality rate associated with listeriosis (Ye et al., 2008). These chitosan-coated films 
inhibited this pathogen growth in a concentration-dependent manner whereas chitosan-
coated films impregnated with antibiotics were considerably more effective against L. 

monocytogenes. The antimicrobial activity of chitosan film proved against food pathogenic 
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bacteria (E. coli, S. aureus, Salmonella typhimurium, L. monocytogenes and Bacillus cereus) has 
also been enhanced by incorporation of garlic oil, potassium sorbate and nisin (Pranoto et 
al., 2005). Edible films or coatings are prepared from proteins, polysaccharides and lipids 
(Cagri et al., 2004) and reduce the risk of pathogen growth on food surfaces (Quattara et al., 
2000; Pranoto et al., 2005; Seydim & Sarikus, 2006; Maizura et al., 2007). As chitosan is a 
potentially edible material, it has been used as a coating material for different types of foods 
(Coma et al., 2002; Coma et al., 2003; Zivanovic et al., 2005; Fernandez-Saiz et al., 2006). 
Incorporation of natural spices such as oregano, rosemary, garlic and lemongrass essential 
oils into edible films has been used to inhibit the growth of microorganisms (Quattara et al., 
2000; Pranoto et al., 2005; Seydim & Sarikus, 2006; Maizura et al., 2007). Addition of essential 
oil of Mexican oregano (Lippia berlandieri Schauer) as antimicrobial agent to edible films of 
chitosan or starch inhibited Aspergillus niger and Penicillium spp. growth at low 
concentrations in the films hampering mould growth (Avila-Sosa et al., 2010).  
Polymeric bioactive films laced with an assortment of antimicrobial agents, such as nisin (Kim 
et al., 2002; Lee et al., 2003; Mauriello et al., 2005; Nguyen et al., 2008), essential oils (Pranoto et 
al., 2005; López et al., 2007; Avila-Sosa et al., 2010) and bacteriocins (An et al., 2000; Mauriello 
et al., 2004; Ercolini et al., 2006; Ghalfi et al., 2006) have been described. Addition of the 
antimicrobial peptide nisin efficiently inhibited growth of L. monocytogenes in films of gelatin 
and corn zein (Ku & Song, 2007). Several reviews are available on preparation, characterization 
and determination of antimicrobial  activity of these films and novel materials (Cutter, 2002; 
Quintavanalla & Vicini, 2002; Cagri et al., 2004; Cha & Chinnan, 2004; Cutter, 2006; Joerger, 
2007; Dutta et al., 2009). Nisin has been the antimicrobial most frequently found in films for 
food packaging (Kim et al., 2002; Lee et al., 2003; Mauriello et al., 2005; Nguyen et al., 2008). Its 
small molecular size allows the production of films that release this peptide upon contact with 
food or liquid (Gill & Holley, 2000; Cutter et al., 2001). A self-assembled bacterial cellulose film 
containing nisin prevented L. monocytogenes and total aerobic bacteria growth on the surface of 
vacuum-packaged processed meat products (Nguyen et al., 2008). These cellulose pellicles 
were produced by Gluconacetobacter xylinus K3 and then impregnated with nisin, yielding 
active cellulose films with potential applicability as antimicrobial packaging films. 
Biodegradable polylactid acid (PLA) polymeric films impregnated with nisin also killed 
foodborne L. monocytogenes, E. coli O157:H7 and Salmonella enteritidis and was proposed as a 
good material to make bottles or films, or coatings for use in liquid or solid food packaging (Jin 
& Zhang, 2008). Similarly to nisin, some antimicrobial films have also been prepared from 
bacteriocins to prevent food contamination with L. monocytogenes (Mauriello et al., 2004; 
Ercolini et al., 2006; Ghalfi et al., 2006). 
The desire for natural ingredients and the realization that plants harbour antimicrobial 
compounds have led to the production of a number of films with extracts from plants 
(Pranoto et al., 2005; Kim et al., 2006; Seydim & Sarikus, 2006). In fact, plants have 
exceptional ability to produce cytotoxic agents and there is an ecological rationale that 
antimicrobial natural products should be present or synthesized in plants following 
microbial attack to protect the producer from pathogenic microbes in its environment 
(Gibbons, 2005). Moreover, natural products are both fundamental sources of new chemical 
diversity and integral components of today's pharmaceutical compendium and more than 
300 natural metabolites with antimicrobial activity have been reported in the period 2000-
2008 (Saleem et al., 2010). As such, there has been an increase in the use of essential oils as 
an alternative to conventional synthetic antimicrobial agents. Essential oils that contain 
higher concentrations of phenolic compounds, such as carvacrol, eugenol, and thymol also 
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possess strong antibacterial properties against foodborne pathogens and display a wide 
range of other biological effects, including antioxidant and antimicrobial properties. The 
mode of action is considered to be the disturbance of the cytoplasmic membrane, disrupting 
the proton motive force, electron flow, and active transport, and/or coagulation of bacteria 
cell contents (Burt, 2004). López et al. (2007) prepared flexible films of polypropylene and 
polyethylene/ethylene vinyl alcohol copolymer added of the essential oil of cinnamon 
(Cinnamomum zeylanicum), oregano (Origanum vulgare) and clove (Syzigium aromaticum) and 
determined their activity against a wide range of microoganisms such as Gram-negative or -
positive bacteria, moulds and yeasts showing specially more pronounced antifungal 
activities that persisted for more than two months after films preparation (López et al., 
2007). Oregano and cinnamon essential oils were recently incorporated on the same 
polymeric material completely inhibiting  L. monocytogenes, Salmonella choleraesuis, C. albicans 
and Aspergillus flavus growth (Gutiérrez et al., 2010).  
The enzyme lysozyme has been another natural choice for the preparation of antimicrobial 
films (Park et al., 2004; Souza et al., 2010). Lysozyme is a food grade antimicrobial enzyme 
with bacteriostatic, bacteriolytic and bactericidal activity, particularly against Gram-positive 
bacteria, and efficient in controlling the growth of a great number of food pathogens (Souza 
et al., 2010). In humans, lysozyme is found in a wide variety of fluids, such  as  tears,  breast  
milk,  and  respiratory  and  saliva secretions, as well as in cells of the innate immune 
system, including neutrophils, monocytes, macrophages, and epithelial cells participating of 
the innate defense response against invading microorganisms (Jolles & Jolles, 1984). This 
enzyme acts on bacteria by hydrolyzing the ß-1,4 glycosidic bonds between N-
acetylmuramic  acid  (MurNAc)  and  N-acetylglucosamine (GlucNAc), resulting in 
degradation of peptidoglycan (PG), and  subsequent microbial cell  lysis  (Schindler et al., 
1977). The effective incorporation and release of lysozyme in chitosan films was used to 
reinforce the antimicrobial activity of chitosan (Park et al., 2004). Lysozyme has already been 
embodied in several biodegradable matrices yielding antimicrobial films and surfaces (Park 
et al., 2004; Fernández et al., 2008). In films of sodium caseinate lysozyme was released in a 
controlled manner so that sustained antimicrobial activity against S. aureus and Micrococcus 

lysodeikticus could be achieved (Souza et al., 2010). 

3. Antimicrobial particles 

3.1 Inorganic, metal and composite particles  
The use of geological nanomaterials to heal skin infections has been known since the earliest 
recorded history, and specific clay minerals may prove valuable in the treatment of bacterial 
diseases, including infections for which there are no effective antibiotics, such as Buruli 
ulcer and multidrug-resistant infections (Williams & Haydel, 2010). A French green clay 
(rich in Fe-smectite) has been used in clinics for healing Buruli ulcer, a necrotizing fasciitis 
('flesh-eating' infection) caused by Mycobacterium ulcerans (Falkinham et al., 2009). However, 
little is known about the physicochemical properties involved in the antibacterial activity of 
many minerals.  
The mineral CsAg02 demonstrated broad bactericidal activity against pathogenic Escherichia 

coli, extended-spectrum beta-lactamase (ESBL) E. coli, Salmonella enterica serovar 
Typhimurium, Pseudomonas aeruginosa and Mycobacterium marinum, and a combined 
bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus, 
methicillin-resistant S. aureus (MRSA) and Mycobacterium smegmatis, whereas another 
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mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or even 
enhanced bacterial growth (Haydel et al., 2008). This mineral particulate heated to 200 or 500 
oC still retained bactericidal activity, whereas heated or nonheated cation-exchanged CsAg02 
no longer killed E. coli. Natural mineral mixtures were recently identified with antibacterial 
activity against a broad-spectrum of bacterial pathogens (Cunningham et al., 2010). Mineral-
derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not 
physical, mineral characteristics were responsible for the observed activity. Chelation of 
these minerals with EDTA or desferrioxamine eliminated or reduced antibacterial action 
suggesting a role of an acid-soluble metal species, particularly Fe(3+) or other sequestered 
metal cations, in mineral toxicity. Testing the bactericidal effect of the heated product, many 
toxins were eliminated from consideration (e.g., microbes, organic compounds, volatile 
elements) and several redox-sensitive refractory metals that are common among 
antibacterial clays were identified (Williams & Haydel, 2010).  
Inorganic active agents with antimicrobial activity can be based on a variety of inorganic 
nanostructured materials, such as titanium dioxide (Fu et al., 2005), silver (Jeong et al., 
2005a; Rai et al., 2009) and silver-based nanostructured materials (Nishino & Kanno, 2008; 
Kittler et al., 2009), zinc oxide (Li et al., 2007), copper (Cubillo et al., 2006), gallium (Valappil 
et al., 2008) or gold (Park et al., 2006; Zhang et al., 2008) plus their composites (Sambhy et al., 
2006).  
Metallic and inorganic particles can be loaded into different organic carriers, like liposomes 
(Park et al., 2005), nano- and micro-capsules (Shim et al., 2002) or dendrimers (Raveendran 
et al., 2006) finding many applications in the industry of fabrics (Gorensek et al., 2010; 
Dastjerdi & Montazer, 2010), plastic (Roe et al., 2008; Xu et al., 2010) or biomaterials for drug 
delivery (Sharma et al., 2004; Pandey & Khuller, 2004; Hardi-Ianderer et al., 2008). 
Titanium dioxide nanoparticles have antibacterial (Fu et al., 2005; Daoud et al., 2005) and 
self-cleaning properties (Bozzi et al., 2005). Copper nanoparticles embedded into submicron 
particles of sepiolite (Mg8 Si12 O30 (OH)4 (H2O)4·8H2O) also demonstrated strong bactericidal 
properties (Cubillo et al., 2006) despite the lower antibacterial activity of  copper when 
compared to silver nanoparticles (Pape et al., 2002). Grace & Pandian (2007) have used gold 
nanoparticles as carriers core coated by antibiotics like streptomycin, gentamycin and 
neomycin showing that gold nanocomposites have an intense antibacterial efficiency against 
various Gram-negative and Gram-positive bacteria, like E. coli, P. aeruginosa, S. aureus and 
Micrococcus luteus. They concluded that metal nanoparticles may change the metabolite 
pathway and the release mechanism of bacterial cells. Therefore, Au/drug nanocomposites 
were more efficient than drug alone. Park et al. (2006) loaded gold nanoparticles inside lipid 
liposomes, reporting an increased fluidity and permeability of barrier of the lipid and 
provided a kind of thermally sensitive liposome. Consequently, these systems showed 
potential as controlled release delivery system at particular temperatures (Park et al., 2006). 
Silver has been employed since ancient times to fight infections and control spoilage 
(Tokumaru et al., 1984). Silver nanoparticles are antibacterial and multi-functional 
displaying low toxicity to human cells (Jeong et al., 2005a; Rai et al., 2009; Dastjerdi et al., 
2009). Its antimicrobial effect at low concentrations is therapeutic against over 650 disease-
causing organisms in the body (Jeong et al., 2005a,b; Lok, 2006). The ability of silver to 
prevent biofilm formation has also been demonstrated (Stobie et al., 2008). The most 
common synthesis of silver nanoparticles is the chemical reduction of a silver salt solution 
by a reducing agent such as NaBH4, citrate, or ascorbate (Nickel et al., 2000; Leopold & 
Lendl, 2003; Khanna & Subbarao, 2003; Sondi et al., 2003).  
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Nanocomposites from polymers and silver particles have also been described; silver 
introduction into poly(styrene-co-acrylic acid) copolymer  enhanced antibacterial activity by 
increasing ionic mobility (da Silva Paula et al., 2009). Silver nanoparticles inside phosphate-
based, biodegradable ceramic particles were released in the presence of a growing 
microorganism (Loher et al., 2008). This effect was based on the microorganism 
requirements for mineral uptake during growth, creating a flux of calcium, phosphate and 
other ions to the microorganism. The growing microorganism dissolved the carrier releasing 
the silver nanoparticles. These biodegradable silver carriers in materials and polymer 
coatings enabled the creation of self-sterilizing surfaces (Loher et al., 2008). Metal 
nanoparticles with bactericidal effects can be affixed on various surfaces for prevention or 
protection purposes in specific applications, such as infirmaries, clothing, different surfaces, 
food protection and packing and water treatment (Ruparelia et al., 2008). Contrary to effects 
of ionic silver, the antimicrobial activity of colloidal silver particles is influenced by particle 
dimensions: the smaller the particles, the greater the antimicrobial effect due to its larger 
surface area to get in contact with the bacterial cells (Morones et al., 2005; Panacek et al., 
2006; Pal et al., 2007). 
In spite of several reports on the antimicrobial activity of silver nanoparticles (Sondi & 
Salopek-Sondi, 2004; Pal et al., 2007; Kim et al., 2007; Travan et al., 2009; Li et al., 2010), the 
mechanism of inhibitory effects of Ag ions on microorganisms is not yet fully elucidated. Some 
studies reported that the positive charge on the Ag ion would be crucial for antimicrobial 
activity (Dragieva et al., 1999; Hamouda et al., 1999; Dibrov et al., 2002). However, negatively 
charged silver nanoparticles also killed Gram-negative bacteria in a nanoparticle concentration 
–dependent manner (Sondi & Salopek-Sondi, 2004). The activity was also closely associated 
with the formation of “pits” in the cell wall of bacteria plus nanoparticles incorporation, 
accumulation and permeability increase of the bacterial cell membrane (Sondi & Salopek-
Sondi, 2004). Damage of bacterial cell membrane with observations of pits and gaps on the 
cells was related to reduction of activity of some enzymes, leakage of sugars and proteins and 
cell death (Li et al., 2010). Silver nanoparticle shape also affected antibacterial effect against E. 

coli: truncated triangular silver nanoplates displayed stronger biocidal action than spherical or 
rod-shaped nanoparticles (Pal et al., 2007). 
The use of microbial cells for the biosynthesis of nanosized materials has emerged as a novel 
approach for the synthesis of metal nanoparticles, particularly based on the main reaction of 
reduction/oxidation, where microbial enzymes with reducing or anti-oxidant properties are 
usually responsible for reduction of metal ions compounds into their respective metalic 
particles (Gericke & Piches, 2006a; Prathna et al., 2010). Metal particles can be obtained from 
biosynthesis by microorganisms and plants (Durán et al., 2005; Mohanpuria et al., 2008). 
Bacteria are known to produce inorganic materials either intra- or extracellularly. 
Microorganisms are considered as a potential biofactory for the synthesis of gold (Ahmad et 
al., 2003a; Ahmad et al., 2003b; Sastry et al., 2003; Gericke & Piches, 2006b), silver (Fu et al., 
2000; Fu et al., 2006; Gericke & Piches, 2006a) and cadmium sulphide nanoparticles (Fu et 
al.,1999).  
Silver nanoparticles were biosynthesized by Klebsiella pneumoniae (Shahverdi et al., 2007), 
Staphylococcus aureus (Nanda & Saravanan, 2009), Escherichia coli (Gurunathan et al., 2009) or 
Brevibacterium casei (Kalishwaralal et al., 2010). In combination with antibiotics, such as 
vancomycin and clindamycin, silver nanoparticles biosynthesized by K. pneumoniae 
exhibited enhanced activities against S. aureus (Shahverdi et al., 2007). Curiously, silver 
particles synthesized by S. aureus exhibited activity against resistant strains of Staphylococcus 
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sp. such as the methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis 
(MRSE) (Nanda & Saravanan, 2009). 
Fungi have also been widely studied for the biosynthesis of nanoparticles, and when 
compared to bacteria, they could be used as a source for the production of large amounts of 
nanoparticles. This is associated with the fact that fungi secrete large amounts of proteins, 
which directly translate to higher productivity of nanoparticle formation (Mohanpuria et al., 
2008).  Several fungus species have been employed to synthesize silver nanoparticles:   
Phaenerochaete chrysosporium (Vigneshwaran et al., 2006), Phoma glomerata (Birla et al., 2009), 
Trichoderma viride (Fayaz et al., 2010) and Aspergillus clavatus (Saravanan & Nanda, 2010; 
Verma et al., 2010). The biosynthesized nanoparticles showed antimicrobial activities alone 
(Verma et al., 2010; Saravanan & Nanda, 2010) or combined with antibiotics (Birla et al., 
2009; Fayaz et al., 2010). Several plants have also been investigated for their role in the 
synthesis of nanoparticles (Torresday et al., 2002; Bali et al., 2006). The advantage of using 
plants to synthesize nanoparticles is that they are easily available, safe to handle and possess 
a broad variability of metabolites that may act in reduction reactions (Prathna et al., 2010). 
Gold (Torresday et al., 2002; Song et al., 2009), silver, nickel, cobalt, zinc and copper 
nanoparticles were obtained from biosynthesis by plants (Bali et al., 2006). Antibacterial 
properties of silver nanoparticles synthesized by plants like Azadirachta indica (Tripathi et al., 
2009) or Acalypha indica (Krishnaraj et al., 2010) were recently reported. These particles were 
incorporated onto cotton disks, showing activity against E. coli. Leaf extracts were also used 
to synthesize silver nanoparticles with antimicrobial activity against water born pathogens 
such as E. coli and Vibrio cholerae.  

3.2 Polymeric, lipid-based and hybrid particles 
Biocompatible and biodegradable polymers have been extensively used in clinics for 
controlled drug release. Polymeric nanoparticles can be formed through self-assembly of 
copolymers, consisting of hydrophilic and hydrophobic segments or through linear 
polymers, such as poly (alkylacrylates) and poly (methylmethacrylate). A variety of 
biodegradable polymers have been used to form nanoparticles, including poly(lactic acid) 
(PLA), poly(glycolid acid) (PGA), poly(lactide-co-glycolide) (PLGA) and polyethylene 
glycol (PEG) (Sharma et al., 2004; Pandey & Khuller, 2004; Hardi-Ianderer et al., 2008; Zhang 
et al., 2010). Antimicrobial drugs can be adsorbed to the nanoparticles during 
polymerization or covalently conjugated to the nanoparticles surface after they are formed 
(Zhang et al., 2010).  Polystyrene (PS) and poly(styrene-co-styrene sulfonate) particles coated 
with silver nanoparticles by gama-irradiation induced reduction of Ag ions yielding 
microbicidal composite particles against S. aureus (Oh et al., 2006). Another study described 
PS particles coated with poly(ethylene-co-butylene) copolymer containing a 
polymethacrylate block activated with amino or octyl bromide bactericidal moieties (Lenoir 
et al., 2005). The antimicrobial activity was directly related to the concentration of coated PS 
particles. Amphotericin B (AmB)-loaded poly(ε-caprolactone) nanospheres have  therapeutic 
efficacy against Leishmania donovani (Espuelas et al., 2002) and C. albicans (Espuelas et al., 
2003), when compared to free drug. Rifampicin-loaded polybutylcyanoacrylate 
nanoparticles have also shown enhanced antibacterial activity both in vitro and in vivo 
against S. aureus and Mycobacterium avium due to an effective delivery of drugs to 
macrophages (Skidan et al., 2003). Chitosan, a natural biopolymer, has antimicrobial and 
antifungal activity (Sudarshan et al., 1992; Jeon et al., 2001). Chitosan nanoparticles prepared 
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and loaded with antimicrobials or antibiotics (Portero et al., 2002) or metals (Qi et al., 2004) 
further enhance their antimicrobial action. Chitosan nanoparticles themselves or with 
adsorbed copper ions inhibited bacterial growth, with copper-loaded ones exhibiting higher 
activity due to higher surface charge density enhancing the affinity with the negatively 
charged bacteria membrane (Qi et al., 2004).. Polymeric particles of poly(4-vinyl pyridine), 
synthesized and chemically modified to become positively charged, were used for in situ 
silver and copper metal nanoparticle synthesis and presented antimicrobial action against S. 

aureus, P. aeruginosa, E. coli and Bacillus subtilis  (Ozay et al., 2010).   
Charged polymers or polyelectrolytes have often been used to produce nanostructured 
particles (Vieira & Carmona-Ribeiro, 2008; Melo et al., 2010). Cationic polymers can be 
potent antimicrobial agents (Codling et al., 2003; Kuegler et al., 2005). Cationic poly(arylene 
ethylene) conjugated polyelectrolytes have recently been reported as potent dark biocidals 
against P. aeruginosa, due to its high lipophilicity and the presence of accessible quaternary 
ammonium groups (Corbitt et al., 2009). The layer-by-layer (LbL) procedure (Decher & 
Hong, 1991) was used to produce hybrid antimicrobial and cationic particles from 
dioctadecyldimethylammonium bromide (DODAB) bilayer fragments (BF) supporting 
consecutive layers of the anionic polymer carboxymethylcellulose (CMC) and the cationic 
polyelectrolyte poly(diallyldimethylammonium) chloride (PDDA) (Melo et al., 2010). Both 
cationic microbicides, DODAB and PDDA, were combined in a single supramolecular 
assembly. These assemblies in form of small or large particles were obtained from small or 
large DODAB BF concentrations, respectively. The assemblies DODAB BF/CMC/PDDA 
exhibited potent antimicrobial activity against P. aeruginosa and S. aureus. The antimicrobial 
effect was similar for particles with 100 or 500 nm of mean diameter and dependent only on 
the amount of positive charges on particles (Melo et al., 2010). These hybrid particles also 
delivered AmB to C. albicans (Vieira & Carmona-Ribeiro, 2008). Cationic lipid, antibiotic and 
cationic polyelectrolyte nanostructured in each particle effectively attacked the fungus. 
Figure 6 shows these assemblies which were microbicidal with or without drug. 
 

DODAB BF/CMC/PDDA

 
 

 
 

DODAB BF/AmB/ CMC/PDDA 

 
 

Fig. 6. Antimicrobial particles of cationic lipid (DODAB) and polyelectrolytes (CMC and 
PDDA), with or without amphotericin B (AmB). Adapted from Vieira & Carmona-Ribeiro, 
2008 and adapted with permission from Melo et al., 2010. Copyright 2010 American 
Chemical Society. 

Other interesting approaches were immobilization of bacteriophages active against a variety 
of food-borne bacteria by physisorption to modified, cationic silica particles (Cademartiri et 
al., 2010) or use of  low-density lipoproteins (LDLs) from human plasma for delivering 
drugs inside the cells and treat intracellular infections (Hu et al., 2000). Biopolymer particles 
from lipoproteins can readily be obtained from human plasma by density gradient 
ultracentrifugation (Kader et al., 1998). A lipid core is surrounded by a monolayer of 
phospholipids, in which cholesterol and apolipoprotein-B are present.  Other human plasma 
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lipoproteins, the high-density lipoproteins (HDLs) particles, have also been related with 
antimicrobial properties against Staphylococcus epidermidis, due to apolipoprotein A1 (Tada 
et al., 1993) or related with protection against trypanosome infection, due to native human 
HDLs containing haptoglobin-related protein (Hpr), apolipoprotein L-I (apoL-I) and 
apolipoprotein A-I (apoA-I) (Shiflet et al., 2005). 
Dendrimers also possess several unique properties that make them a good nanoparticle 
platform for antimicrobial drug delivery. They are highly ordered and regularly branched 
globular macromolecules, with a core, layers of branched repeat units emerging from the 
core and functional end groups on the outer layer of repeat units (Grayson & Frechet, 2001). 
The branched nature of dendrimers provides huge surface area to size ratio, allowing great 
reactivity with microorganisms and drug loading capacity (Florence, 2005). Moreover, using 
antimicrobial drugs to synthesize dendrimers, they can become a potent antimicrobial for 
themselves. Dendrimer biocides may contain quaternary ammonium salts as functional end 
groups displaying greater antimicrobial activity against bacteria than small drug molecules, 
due to a high density of active antimicrobials on the dendrimer surfaces. The polycationic 
structure of dendrimer biocides facilitates the initial electrostatic adsorption to negatively 
charged bacteria, increasing membrane permeability and allowing more dendrimers to enter 
the bacterial cell (Chen et al., 2000; Chen & Cooper, 2002). Dendrimers have also been used 
as a vehicle to develop antimicrobial properties in textile fabrics (Ghosh et al., 2010; 
Klaykruayat et al., 2010). The poly(amidoamine) (PAMAM) dendrimer was modified to 
obtain quaternary ammonium groups as antimicrobial moieties or loaded with silver 
compounds. Both modified PAMAM structures were applied to cotton and nylon fabrics, 
exhibiting significant biocidal activity against S. aureus for each type of modified dendrimer 
(Ghosh et al., 2010). Cotton fabrics were impregnated with chitosan modified with 
antimicrobial PAMAM dendrimers, which imparted good activity against S. aureus to the 
fabrics when compared to fabrics with unmodified chitosan (Klaykruayat et al., 2010). 
Dendrimeric structures were effective against mature biofilms, completely inhibiting E. coli 
(Hou et al., 2009) or P. aeruginosa (Johansson et al., 2008) biofilm formation and inducing 
complete dispersion of both bacterial established mature biofilms, in a clear advantage with 
the majority of antimicrobial agents that are ineffective against already formed biofilms. 
Furthermore, dendrimers design can mimick the active conformation of linear antimicrobial 
peptides (Janiszewska & Urbanczyk-Lipkowska, 2007; Bruschi et al., 2010). The synthesis of 
a family of these peptidic dendrimers also showed antimicrobial properties against S. aureus, 
E. coli and C. albicans (Janiszewska & Urbanczyk-Lipkowska, 2007). Pini et al. (2005) 
reported the synthesis of an antimicrobial peptide in monomeric and dendrimeric form, 
obtaining activity against E. coli of the dendrimeric peptide much higher than that of the 
monomeric form. In fact, multimeric peptides offer several advantages with respect to their 
monomeric counterparts, due to improved stability in the presence of degrading enzymes as 
peptidases and proteases (Bruschi et al., 2010). A recent review reported the current state of 
therapeutic potential of the dendrimer systems in wound healing, bone mineralization, 
tissue repair, anticoagulant, anti-inflammatory and anticancer therapy (Gajbhiye et al., 
2009). 
Among the classical cationic surfactants, quaternary ammonium compounds (QACs) are the 
most useful antiseptics and disinfectants (Merianos, 1991; Frier, 1971). Since 1935 the 
antibacterial activity of the long-chained quaternary ammonium salts has been disclosed 
(Domagk, 1935). The fourth generation of quaternary antimicrobials included several mono- 
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and dialkyl dimethylammonium and polymeric quaternary ammonium salts (Petrocci et al., 
1979). QACs are membrane active agents (Hugo & Frier, 1969; Furhop & Wang, 2004) that 
can cause lysis of spheroplasts and protoplasts suspended in sucrose (Salton, 1968; Davies & 
Field, 1969; Denyer, 1995; Russel et al., 1999). The cationic agents hypothetically react with 
phospholipid components in the cytoplasmic membrane, thereby producing membrane 
distortion and protoplast lysis under osmotic stress (Cabral, 1992; Russel & Chopra, 1996). 
Another possible mechanism for QACs action might be their inhibition and blockade of 
potassium channels in Gram-negative bacteria (Raja & Vales, 2009). The positive charge on 
microbial cells has been often correlated with the biocidal action (Isquith et al., 1972; Endo et 
al., 1987; Tapias et al., 1994; Sicchierolli et al., 1995; Fidai et al., 1997; Friedrich et al., 2000; 
Campanhã et al., 2001; Kugler et al., 2005). Dioctadecyldimethylammonium bromide 
(DODAB) (Tapias et al., 1994; Campanhã et al., 1999; Pereira et al., 2008; Melo et al., 2010), 
cetyltrimethylammonium bromide (CTAB) (Vieira & Carmona-Ribeiro, 2006; Dvoracek et 
al., 2009) and benzyldimethyldodecylammonium chloride (BDMDAC) (Ferreira et al., 2010) 
are some examples of quaternary ammonium compounds used to prepare antimicrobial 
particles. 
Supramolecular assemblies of cationic lipid such as the bilayer fragments (BF) or the large 
bilayer vesicles have already been established as antimicrobial agents (Tapias et al., 1994; 
Sicchierolli et al., 1995; Martins et al., 1997; Campanhã et al., 1999; Carmona-Ribeiro, 2000; 
Campanhã et al., 2001; Lincopan et al., 2003; Carmona-Ribeiro, 2003; Carmona-Ribeiro et al., 
2006; Vieira & Carmona-Ribeiro, 2008). In particular, DODAB is a cationic bilayer-forming 
synthetic lipid with a high chemical stability and well-described anti-infective properties 
(Carmona-Ribeiro et al., 2006). Adsorption of DODAB cationic bilayers onto bacteria cells 
changes the sign of the cell surface potential from negative to positive, with a clear 
relationship between positive charge on bacterial cells and cell death (Campanhã et al., 
1999). DODAB BF also affected viability of Candida albicans (Campanhã et al., 2001; Vieira & 
Carmona-Ribeiro, 2006). Simultaneous determination of C. albicans viability and 
eletrophoretic mobility as a function of DODAB concentration also yielded good correlation 
between yeast surface charge and cell viability. Micromolar DODAB concentrations 
effectively killed bacteria, but DODAB concentrations required to kill yeast cells were much 
higher than those required to kill bacteria. Mammalian cells in culture were still more 
resistant to DODAB than fungi (Carmona-Ribeiro et al., 1997). DODAB indeed exhibits 
differential cytotoxicity, an important property for therapeutic uses. DODAB bilayer 
fragments (BF), by themselves or combined with particles, can produce lipid-based 
biomimetic assemblies or particles with antimicrobial activity. Synthetic amphiphile bilayers 
prepared from DODAB or other synthetic lipid, sodium dihexadecyl phosphate (DHP), 
were deposited onto oppositely charged polystyrene microspheres, forming bilayer covered 
lattices (Carmona-Ribeiro & Midmore, 1992). These homodisperse, DODAB bilayer-covered 
polystyrene sulfate (PSS) particles were combined with DNA, yielding supramolecular 
assemblies of PSS/DODAB/DNA (Rosa et al., 2008). Over a low concentration range of 
DNA, PSS/DODAB/DNA assemblies were cationic, colloidally stable and highly cytotoxic 
against E. coli cells, while from DNA concentration corresponding to charge neutralization, 
neutral or anionic assemblies, PSS/DODAB/DNA exhibited low colloid stability, high 
polydispersity and low antimicrobial activity. 
Other important application of lipid based biomimetics refers to formulation of hydrophobic 
drugs. Aqueous miconazole (MCZ) aggregates were solubilized and/or colloidally 
stabilized by bilayer-forming synthetic lipids such as DODAB or DHP dispersions (Pacheco 
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& Carmona-Ribeiro, 2003). Drug particles became colloidally stable in the presence of 
charged bilayer fragments. At high drug to lipid molar proportion (P), when bilayer 
fragments covered drug particles, formulations were stable and highly effective. At low P,  
the drug became soluble in its monomeric form at the borders of the bilayer fragments 
(Vieira & Carmona-Ribeiro, 2001; Pacheco & Carmona-Ribeiro, 2003; Lincopan et al., 2003). 
The formulations were also effective and stable despite the toxicity due to the large 
concentration of cationic lipid (Lincopan et al., 2005; Lincopan et al., 2006). The results 
showed that synthetic bilayer fragments offered extra solubilization sites useful as receptive 
surfaces at their hydrophobic borders. The MCZ particles covered with DODAB BF showed 
a synergistic action between lipid and drug against C. albicans (Lincopan & Carmona-
Ribeiro, 2006). At high P, addition of chaotropic K2HPO4 converted MCZ aggregates into 
negatively charged particles with affinity for cationic lipid, which then surrounded each 
drug particle with a cationic layer. In these formulations DODAB and MCZ acted 
synergistically against yeast. Biomimetic PSS/DODAB/DNA and MCZ drug particles are 
illustrated in Figure 7. 
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Fig. 7. Biomimetic particles: PSS/DODAB/DNA against E. coli (A); MCZ/DODAB against 
C. albicans (B). Adapted with permission from Rosa et al., 2008. Copyright 2008 American 
Chemical Society. Adapted with permission from Lincopan & Carmona-Ribeiro, 2006. 
Copyright 2006 Oxford University Press. 

Lipids such as fatty acids, triglycerides, steroids, partial glycerides and waxes can also be 
used to produce solid nanoparticles (Zhang et al., 2010). As in oil-in-water nanoemulsions 
where a dispersed oil phase is stabilized in a water phase by an emulsifying layer of 
surfactant, nanoparticles composed of solid lipids such as stearic acid or solid lipid 
nanoparticles (SLN) (Müller et al., 2000) have been stabilized with polymers or surfactants 
such as poloxamer 188, polysorbate 80, lecithin, polyglycerol methylgluco distearate, 
sodium cocoamphoacetate or saccharose fatty acid esters and used to carry drugs, peptides 
or proteins (Martins et al., 2007). Advantages of SLN are their composition (biocompatible 
compounds), the fast and effective production process, including the possibility of large 
scale production, the avoidance of organic solvents in the production procedures, and the 
possibility to produce concentrated lipid suspensions. However, the drug loading capacity 
of conventional SLN is limited because of the formation of a perfect lipid crystal matrix and 

PSS

DNA

PSS/ DODAB PSS/ DODAB/ DNA

PSS

DNA

PSS/ DODAB PSS/ DODAB/ DNA

A

www.intechopen.com



Antimicrobial Biomimetics   

 

247 

other colloidal structures such as micelles, liposomes, mixed micelles and drug nanocrystals 
might be also present in the aqueous dispersion (Wissing et al., 2004). The preparation of 
SLN involves a first step of emulsification in hot water by stirring 10% of melted solid lipid 
such as stearic acid, 15% of surfactant and up to 10% of co-surfactant via microemulsions. 
Next, the warm microemulsion is dispersed under stirring in excess cold water. Finally, 
ultrafiltration or liophylization remove water excess and increases the SLN concentration 
(Fundaro et al., 2000; Igartua et al., 2000; Mehnert & Mäder, 2001).   
SLNs are considered good drug carriers to obtain sustained release of antibiotics (Faustino-
Vega et al., 2009; Han et al., 2009). SLNs can act as promising carriers for sustained 
ciprofloxacin release in infections (Jain & Banerjee, 2008) or to enhance the bioavailability of 
tobramycin from antibiotic-loaded SLN in the aqueous humor for topical ocular delivery 
(Cavalli et al., 2002). SLNs also represent a good carrier for intracerebral delivery of drugs, 
since these nanocarriers can not only mask the blood brain barrier limiting characteristics, 
but may also protect the drug from chemical and enzymatic degradation (Tiwari & Amiji, 
2006). Besides, reduction of toxicity of drugs to peripheral organs can also be achieved with 
the SLN delivering the drugs directly to the central nervous system. Another possible 
application of SLNs is to deliver azole antifungal drugs to superficial fungal infection 
patients (Gupta et al., 2008).  SLNs can also facilitate the delivery of anti-tuberculosis drugs 
such as rifampicin, isoniazid and pyrazinamide to the lungs as well as to the lymphatic 
system (Pandey & Khuller, 2005). Nimje et al. (2009) reported the selective delivery of 
rifabutin, another antituberculosis drug, to alveolar tissues, using drug-loaded solid lipid 
nanoparticles, increasing the therapeutic margin of safety and reducing side effects.  

4. Liposomes in antimicrobial chemotherapy 

Many infections are localized within phagocytic cells in the reticuloendothelial system (liver 
and spleen), in the blood stream, or in granuloma in various tissues and are possibly targets 
for liposomal drug delivery and therapy (Richarson, 1983). Examples of such infectious 
diseases are brucellosis, leprosy, tuberculosis, and listeria, all of them caused by intracellular 
bacteria. 
Liposomes have been extensively used as carriers of antimicrobial and antineoplastic 
drugs (Lopez-Berestein, 1987). They are usually produced from naturally occurring, 
biodegradable and non-toxic phospholipids (Furneri et al., 2000). Liposomes have been 
designed to release drugs into an extracellular or intracellular compartment to reach their 
site of action (Fielding, 1991). The ability of liposomes to alter drug distribution depends 
largely on their size and surface properties (Fielding, 1991). Thus, liposomal 
encapsulation of antibiotics helps to increase their therapeutic index with mode of action 
related to increasing the drug concentration at the site of infection and/or reducing its 
toxicity (Schiffelers et al., 2001a). Organs rich in cells from the reticuloendothelial system 
(RES) preferentially take up liposomes, e.g. liver, spleen, lung and bone marrow 
(Gregoriadis, 1976a; Gregoriadis, 1976b). Targeting of liposomal antibiotic to bone 
marrow might achieve a high concentration of the drug in bone tissues. For extracellular 
bacteria, the enhanced antibacterial effect may be due to a fusion mechanism of the 
liposomal formulation with bacteria. The phagocytosis of antibiotic-loaded liposomes 
yields therapeutic intracellular drug concentrations and consequently enhanced killing of 
intracellular microorganisms, such as S. aureus, E. coli, Brucella abortus and Mycobacterium 

avium (Schiffelers et al., 2001a).  
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Most studies regarding liposomal antibiotics deal with aminoglycosides, quinolones, 
polypeptides, and β-lactams (Drulis-Kawa & Dorotkiewicz-Jach, 2010). The many 
advantages of liposomes as antibiotic carriers are improved pharmacokinetics and 
biodistribution, decreased toxicity, enhanced activity against intracellular pathogens, target 
selectivity, enhanced activity against extracellular pathogens, and efectiveness in 
overcoming bacterial drug resistance. The variety of liposomal formulations allows the 
design of effective antibiotic formulations and subsequent therapeutic success (Abeylath & 
Turos, 2008; Jia et al., 2008). 
Traditional antibiotic therapy of staphylococcal osteomyelitis by a single drug or a drug 
combination is ineffective in producing complete sterilization of infected bones. 
Ciprofloxacin and vancomycin were encapsulated in a cationic, anionic or neutral liposomal 
formulation (Kadry et al., 2004). Cationic liposomes entrapped the highest percentage of 
antibiotics, and enhanced antibacterial activity above that of the free antibiotics; they were 
used for therapeutic trials to treat chronic staphylococcal osteomyelitis induced in rabbits.  
These liposomal formulations showed much lower nephrotoxicity than that induced by free 
drugs. Several other papers describe liposomal formulations against pathogenic 
microorganisms such as P. aeruginosa (Okusanya et al., 2009), K. pneumoniae (Gubernator et 
al., 2007), E. coli and S. aureus (Beaulac et al., 1998). The antibiotics chosen for encapsulation 
were mostly fluoroquinolones and aminoglycosides. 
Encapsulation of gentamicin in liposomes can be used to achieve intracellular delivery and 
broaden the clinical utility of this drug.  pH-dependent liposomal fusion with cells could be 
achieved due to the presence of phosphatidylethanolamine (PE) and the pH-sensitive lipid 
N-succinyldioleoyl-PE (Cordeiro et al., 2000). The pharmacokinetics and biodistribution of 
the free and liposomal gentamicin were examined in mice bearing a systemic Salmonella 

enteric serovar Typhimurium infection. Encapsulation of gentamicin in pH-sensitive 
liposomes significantly increased the concentrations of the drug in plasma compared to 
those of free gentamicin.  
Liposomes of DMPC/CHOL (molar ratio 2:1) containing gentamicin showed better activity 
against P. aeruginosa than the free drug (Rukholm et al., 2006). For a highly resistant P. 

aeruginosa strain there was a 16-fold reduction in MIC for the liposomal gentamicin. Similar 
results in MIC reduction were obtained for liposomes of DPPC/CHOL (molar ratio 2:1) 
containing amikacin, gentamicin, and tobramicin (Mugabe et al., 2006). Long-circulating 
liposome encapsulated gentamicin demonstrated superior antibacterial activity over the free 
drug in a single-dose study of immunocompetent rats with K. pneumoniae pneumonia 
(Schiffelers et al., 2001b). Multilamellar liposomes carried gentamicin for treatment of mice 
lethally infected with Brucella abortus (Vitas et al., 1997).   The use of free or liposomal 
gentamicin in liposomes with a negative net charge did not produce a protective effect. Only 
the cationic liposomes had a therapeutic effect against infection. Pulmonary delivery of 
rifampicin encapsulated in liposomes was reported (Deol & Kuller., 1997; Vyas et al., 2004; 
Zaru et al., 2007; Changsan et al., 2009). Lung-specific Stealth liposomes made of 
phosphatidylcholine, cholesterol, dicetylphosphate, O-steroyl amylopectin and 
monosialogangliosides/ distearylphosphatidylethanolamine-poly (ethylene glycol) 2000 for 
the targeted delivery of anti-tuberculosis drugs to the lung have been described (Deol & 
Kuller, 1997). Modification of surface of stealth liposomes by tagging O-stearylamylopectin 
resulted in the increased affinity of these liposomes towards lung tissue of mice. Regarding 
tissue distribution, these liposomes showed more accumulation in lungs than in 
reticuloendothelial system of the normal and tuberculous mice. Isoniazid and rifampicin 
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encapsulated in liposomes were less toxic to peritoneal macrophages than the free drugs. 
The same formulations administered at one-third of the recommended doses showed a 
sustained release of the drugs in the plasma (5 days), lungs, liver and spleen (7 days) 
(Labana et al., 2002). Vyas et al. (2004) formulated aerosolized liposomes incorporating 
rifampicin via a cast-film method employing egg phosphatidylcholine- and cholesterol-
based liposomes. Liposomes coated with alveolar macrophage-specific ligands 
demonstrated preferential accumulation in alveolar macrophages, maintaining high 
concentrations of rifampicin in the lungs even after 24 h after inhalation. Other 
tuberculostatic drugs such as pyrazinamide (El-Ridy et al., 2007) and rifabutin (Gaspar et al., 
2008) were also formulated in liposomes stressing the great versatility and potential of the 
nanocarriers. Rifampicin-encapsulating liposomes were nontoxic to respiratory associated 
cells, including bronchial epithelial cells, small airway epithelial and alveolar macrophages 
(Changsan et al., 2009). Furthermore, the liposomes did not activate alveolar macrophages 
to produced interleukin-1, tumor necrosis factor-ǂ, or nitric oxide at a level that would 
cascade to other inflammatory effects. The MIC against Mycobacterium bovis was smaller for 
liposomes containing rifampicin than for free rifampicin. 
Liposomal formulations for important antifungal drugs such as amphotericin B (AmB) were 
first described by Lopez-Berestein and coworkers (Lopez-Berestein, 1987). Systemic fungal 
infections are often the cause of mortality in patients with hematological malignancies and 
certain other conditions associated with profound immunosuppression. The majority of 
such infections are caused by Aspergillus and Candida species (Potter, 2005). Voriconazole 
and lipid-associated AmB have been shown to be effective in the first-line therapy (Potter, 
2005). Nebulized liposomal AmB formulations are effective, safe, and convenient for the 
prevention of Aspergillus infection in lung transplant patients (Monforte et al., 2010). A novel 
method was developed to incorporate polyene antibiotics, nystatin and AmB, into 
liposomes prepared from the mixture of phosphatidylcholine and cholesterol (7: 3) or 
phosphatidylcholine, cholesterol, and cardiolipin (7: 3: 1) plus the amphiphilic polymer N-
vinylpyrrolidone showing higher antifungal activity than non-immobilized antifungal 
antibiotics (Yamskov et al., 2008). Other water-soluble complexes of AmB and 
polyvinylpyrrolidone were compared with AmB for antifungal activity, and were less 
haemolytic and cytotoxic than AmB showing cytotoxicity similar to AmBisome (Charvalos 
et al., 2006). AmB-loaded cationic liposome gels were formulated with 1, 2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE), 1, 2-dioleoyl-3-trimethylammonium-propane 
(DOTAP), and cholesterol (CH) at a molar ratio of DOPE: DOTAP: CH  of 4:5:1 in 
thermosensitive gel composed of poloxamer 407 and poloxamer 188. AmB-loaded cationic 
liposome gels were more stable and less toxic than free AmB. These gels containing cationic 
liposome may become useful for vaginal delivery of AmB (Kang et al., 2010). 
Disadvantages of liposomal antibiotics are associated with chemical and physical instability 
mainly due to the hydrolysis of ester bonds or the oxidation of unsaturated acyl chains of 
the lipids used to construct the liposomal vesicles (Sharma & Sharma, 1997; Storm & 
Crommelin, 1998; Carmona-Ribeiro, 2003). Besides hydrolysis, peroxidation of unsaturated 
acyl chain bonds is also possible (Storm & Crommelin, 1998). Oxidation and/or hydrolysis 
can be prevented by adding antioxidant components or by freeze-drying or by storage at 
low temperature (Storm & Crommelin, 1998). The physical instability of liposomal drugs 
leads to drug leakage from the lipid vesicles. Under physiological conditions, stability is 
usually low and depends on the interaction of the liposomal membranes with components 
of body fluids (Gregoriadis, 1995). This is a very unfavourable situation, especially as the 
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best results of antibacterial activity of liposomal drugs in vitro are observed for positively 
charged or fluid liposomes (Drulis-Kawa et al., 2006). The presence of anionic lipids in 
liposomal vesicles also favours the binding of serum proteins to the vesicle surface (Briones 
et al., 2008).  
Encapsulation efficiency depends on the type of lipids and on the hydrophobic-hydrophilic 
character of the drug. There are several instances of low encapsulation efficiency of 
antibiotics depending on type of the lipid. Gubernator et al. (2007) obtained meropenem and 
gentamicin (hydrophilic drugs) encapsulation efficiency in the range of 2.7–5.7% for a 
cationic fluid formulation. Lutwyche et al. (1998) showed that 25–33% of total gentamicin 
was associated with the outer surface of anionic liposomes composed of DOPE lipid, so a 
gentamicin encapsulation capacity of 2.8% was obtained in the anionic formulation 
DOPE/DOPS/PEG. Low encapsulation efficiency was also obtained by others (Lutwyche et 
al., 1998; Omri & Ravaoarinoro, 1996) making liposomal formulations much more expensive 
than conventional antibiotic treatment (Kshirsagar et al., 2005). 
Since the major requirement to form a supramolecular assembly of the bilayer type is a 
cylindrical molecular geometry (Israelachvili et al., 1977), bilayer vesicles and liposomes can 
be obtained not only from expensive phospholipids but also from several other synthetic 
amphiphiles  such as dialkyldimethylammonium bromide or chloride (Kunitake et al., 
1977), sodium dihexadecylphosphate (Mortara et al., 1978, Carmona-Ribeiro et al., 1991) and 
many other molecules (Furhhop & Fristch, 1986; Segota & Tezak, 2006). For synthetic lipids 
such as dioctadecyldimethylammonium bromide (DODAB), chemical stability is superior to 
the one exhibited by the phospholipids since the hydrocarbon chains are saturated and ester 
functionalities are absent from DODAB chemical structure. The properties and applications 
of vesicles and bilayer fragments composed solely of synthetic lipids have been reviewed in 
the literature (Carmona-Ribeiro, 1992; Carmona-Ribeiro, 2001; Carmona-Ribeiro, 2003; 
Carmona-Ribeiro, 2006; Carmona-Ribeiro, 2007; Carmona-Ribeiro, 2010a; Carmona-Ribeiro, 
2010b).  
DODAB bilayers adsorb or become adsorbed onto negatively charged biomolecules such as 
proteins (Carvalho & Carmona-Ribeiro, 1998; Lincopan & Carmona-Ribeiro, 2009), DNA 
(Kikuchi & Carmona-Ribeiro, 2000; Rosa et al., 2008), biological structures such as 
microorganisms (Martins et al., 1997; Campanhã et al., 1999; Campanhã et al., 2001; Pacheco 
et al., 2004; Carmona Ribeiro, 2006) or mammalian cells (Carmona-Ribeiro et al., 1997) or 
drugs (Vieira & Carmona-Ribeiro, 2001; Lincopan et al., 2003; Pacheco & Carmona-Ribeiro, 
2003; Lincopan et al., 2005; Carmona-Ribeiro, 2006; Lincopan & Carmona-Ribeiro, 2006; 
Vieira et al., 2006; Vieira & Carmona-Ribeiro, 2008). In antimicrobial chemotherapy, DODAB 
revealed excellent microbicidal properties (Vieira & Carmona-Ribeiro, 2001; Pacheco & 
Carmona-Ribeiro, 2003; Lincopan et al., 2003; Lincopan et al., 2005; Vieira et al., 2006; 
Carmona-Ribeiro, 2006; Lincopan & Carmona-Ribeiro, 2006; Vieira & Carmona-Ribeiro, 
2008) besides outstanding versatility to formulate several antimicrobial drugs (Vieira & 
Carmona-Ribeiro, 2001; Lincopan et al., 2003; Pacheco & Carmona-Ribeiro, 2003; Lincopan et 
al., 2005; Vieira et al., 2006; Lincopan & Carmona-Ribeiro, 2006; Carmona-Ribeiro, 2006; 
Vieira & Carmona-Ribeiro, 2008). AmB and MCZ self-assemble and solubilize at 
hydrophobic sites of DODAB bilayer fragments in water solution exhibiting in vivo 
therapeutic activity (Vieira & Carmona-Ribeiro, 2001; Pacheco & Carmona-Ribeiro, 2003;  
Lincopan et al., 2003; Lincopan et al., 2005; Vieira et al., 2006; Carmona-Ribeiro, 2006). In 
order to formulate hydrophobic drugs with the DODAB lipid at high drug-to-lipid molar 
ratios, the “sticky” property of chaotropic dihydrogen phosphate anion converted MCZ or 
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AmB drug particles into negatively charged particles (Figure 7). Thereafter, anionic drug 
particles could be coated by the DODAB cationic lipid (Lincopan & Carmona-Ribeiro, 2006; 
Vieira et al., 2006). These formulations were tested against Crytpococcus neoformans and 
Candida albicans and were very effective. Coalescence of bilayer fragments around drug 
granules encapsulated drug particles at high drug-to-lipid molar ratios (Pacheco & 
Carmona-Ribeiro, 2003; Lincopan & Carmona-Ribeiro 2006; Vieira et al., 2006; Vieira & 
Carmona-Ribeiro, 2008). In vivo activity of the DODAB/AmB formulation against systemic 
candidiasis was evaluated from survival and tissue burden experiments in comparison to 
the classical drug formulation Fungizone (Lincopan et al., 2003). Effective AmB dose in the 
novel DODAB/AmB formulation was lower than AmB dose in Fungizone but gave the 
same therapeutic result: 100% survival (Lincopan et al., 2003). From tissue burden 
experiments, DODAB/AmB efficacy was also equivalent to the one exhibited by Fungizone 
regarding elimination of Candida albicans colonization in spleen and kidneys. In contrast to 
Fungizone, which is the traditional AmB formulation using deoxycholate, the novel 
formulation exhibited low nephrotoxicity (Lincopan et al., 2005). Synthetic and charged 
bilayer fragments are opening new perspectives for delivery of water insoluble drugs. In the 
specific case of the synthetic cationic lipid DODAB, bilayer fragments present antimicrobial 
activity, solubilize fungicides such as AmB and MCZ, stabilize hydrophobic drug particles, 
are therapeutically effective in vivo, and sometimes exhibit synergism with the drug carried. 

5. Antimicrobial peptides 

Antimicrobial peptides (AMPs) are widely distributed in nature, being produced by 
bacteria, plants, and a wide variety of animals – both vertebrates and invertebrates (Zasloff, 
2002; Brogden, 2005; Pereira, 2006; Rossi, 2008). These compounds are also considered to be 
key players in innate immunity against microorganisms (Devine et al., 2002; Song et al., 
2005). Although AMPs produced by animal and plants and those produced by bacteria 
certainly function in entirely different settings, the production of bacterial AMPs may also 
be thought of as a type of defense, since the peptides kill invading bacteria that compete 
with the AMP-producer for nutrients. The AMPs produced by bacteria seem overall to be 
more potent than the ones produced by eukaryotes, the former peptides being active at pico- 
to nanomolar concentrations and the latter at micromolar concentrations (Fimland et al., 
2005). AMPs are generally small peptides consisting of 5-50 amino acid residues and are 
highly positively charged (Hancock, 1998) amphipathic molecules with well defined 
hydrophobic and hydrophilic regions (Zasloff, 2002; Toke, 2005). AMP´s found in nature 
exhibit a wide variety of structures and amino acid sequences with amphiphilic nature and 
positive charge as the only common factors between them (Melo et al., 2009). These 
properties permit the peptide to fold into an amphiphilic structure in three dimensions, 
often upon contact with membranes, so they form separate patches rich in positively 
charged and hydrophobic amino acids. Folded peptides fall into four broad structural 
groups: ǃ-sheet peptides stabilized by two to four disulfide bridges (for example, human ǂ- 
and ǃ-defensins, plectasin or protegrins); ǂ-helical peptides (for example, LL-37, cecropins 
or magainins); extended structures rich in glycine, proline, tryptophan, arginine and/or 
histidine (for example, indolicidin); and loop peptides with one or disulfide bridge (for 
example, bacteriocins) (Hancock & Sahl, 2006). Among the bacteriocins of Gram-positive 
bacteria, there is a particular group, the lantibiotics (lanthionine-containing peptide 
antibiotics), which are characterized by thioether-based intramolecular rings resulting from 
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post-translational modifications of serine (or threonine) and cysteine residues (for example, 
nisin and mersacidin) (McAuliffe et al., 2001). Lanthionine rings, some of which represent 
conserved binding motifs for recognition of specific targets, create segments of defined 
spatial structures in the peptides (Hsu et al., 2004). These ring structures also provide 
stability against proteases and against the antigen-processing machinery, since antibodies 
against highly cross-bridged antibiotics are very difficult to obtain. 
Hundreds of peptide antibiotics have been described in the past half-century (Perlman & 
Bodansky, 1971; Kleinkauf & Dohren, 1988; Hancock et al., 1995). AMPs belong to two 
classes. They can be nonribosomally (gramicidins, polymyxins, bacitracins, glycopeptides, 
etc.) or ribosomally synthesized peptides. The former are often drastically modified and are 
largely produced by bacteria, whereas the latter are produced by all living species 
(including bacteria) as a major component of the natural host defense molecules of these 
species (Perlman & Bodansky, 1971; Kleinkauf & Dohren, 1988). 
Non-ribosomally synthesized peptides can be described as peptides elaborated in bacteria, 
fungi, and streptomycetes that contain two or more moieties derived from amino acids 
(Perlman & Bodansky, 1971; Kleinkauf & Dohren, 1988). By definition even the longer peptidic 
molecules in this class are made on multienzyme complexes rather than being synthesized on 
ribosomes. Many of the antibiotics used in our society are peptide derived. For example, the 
natural penicillins can be dissected into residues of mono substituted acetic acid, L-cysteine 
and D-valine, while cephalosporin C, the basic building block of many semi synthetic 
cephalosporins comprises D-a-aminoadipic acid, L-cysteine, a,b-dehydrovaline, and acetic 
acid. The glycopeptides class of antibiotics including vancomycin and teicoplanin have sugar-
substituted peptide backbones (Hancock & Chapple, 1999). Another example is daptomycin 
lipopeptide, an important reserve antibiotic against multiple resistant Gram positive bacteria. 
Cationic peptides such as polymyxin B (net charge of +5) and gramicidin S (net charge of 
+2) exhibit different selectivities. The first is selective  to Gram-negative bacteria whereas the 
second exhibited activity against  Gram-positive and Gram-negative bacteria plus Candida 

albicans (Kondejewski et al., 1996). The cationic antimicrobial peptides act on cells by self-
promoting their uptake across the cytoplasmic membrane interfering with the cytoplasmic 
membrane functionality as a barrier. In contrast, the gram-positive-specific antibiotic 
bacitracin works by inhibiting the transfer of cytoplasmically synthesized peptidoglycan 
precursors to bactoprenol pyrophosphate. Other antibiotic peptides of nonribosomal origin, 
the streptogramins, are protein synthesis inhibitors (Hancock & Chapple, 1999). 
Ribosomally synthesized peptides are produced by eukaryotes and represent crucial 
components of their defense systems against microorganisms, being widely distributed in 
nature and produced by mammals, birds, amphibians, insects, plants, and microorganisms. 
Although they form a diverse group of peptides as judged by their primary structures, they 
are often cationic, amphiphilic and most of them kill bacteria by permeabilizing their cell 
membranes. Their positive charge presumably facilitates interactions with the negatively 
charged bacterial phospholipid-containing membranes and or acidic bacterial cell walls, 
whereas their amphiphilic character enables membrane permeabilization. Classification 
from chemical functionalities may be used for these AMPs from a high content of a certain 
amino acid, most often proline, intramolecular disulfide bridges, and content of ǂ-helical 
structure (Hancock & Chapple, 1999; Papagianni, 2003). 
Antibiotics primarily generated by bacteria and fungi have led to dramatic improvement in 
the ability to treat infectious diseases and significant increase in food animal production. 
They represent one of the major scientific and medical advances of the 20th century (Gordon 
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et al., 2005; McPhee & Hancock, 2005). Although antibiotic therapy is still the first choice to 
combat microbial infections in humans and animals, the prevalence of bacterial resistance to 
conventional antibiotics is a growing public health concern. This has driven the search for 
new antimicrobials that are broadly effective and less likely to induce antimicrobial 
resistance (Sang & Blecha, 2008). While conventional antibiotics are active only against 
bacteria and/or fungi, AMPs have a broader range of applications against bacteria, fungi, 
parasites, enveloped viruses and cancer. A large variety of AMPs synthesized by bacteria 
belong to the group of bacteriocins which are not ribosomally synthesized (Papagianni, 
2003). Bacteriocins are small, heat stable peptides that bacteria use to compete against other 
bacteria of the same species (narrow spectrum) or against bacteria of other genera (broad 
spectrum) (Cotter et al., 2005). The majority of Class I and Class II bacteriocins are active in 
the nanomolar range against Gram-positive bacteria in closely related species or in a broad-
spectrum manner for many species. The most promising bacteriocins as antibiotics are 
produced by lactic acid bacteria (LAB) with the core genera including Lactobacillus, 
Lactococcus, Leuconostoc, Pediococcus and Streptococcus. Examples of such peptides are nisin 
(Cotter et al., 2005; Dufour et al., 2007), mersacidin (pre-clinical test to treat Gram-positive 
infections) (Hancock & Sahl, 2006) and lacticin (against mastitis infections) (Gardiner et al., 
2007). Table 1 illustrates AMPs diversity. 
 

 Origin Class Examples Antimicrobial activity Reference 
Lactic Acid 
Bacteria LAB 

Class I and II 
Bacteriocins 

Lantibiotics 
Class I: nisin, mersacidin; 
non-lantabiotics 
Class II: pediocin, PA1, 
enterocin AS48 

Nanomolar range, activity against 
closely related or broad-spectrum 
Gram-positive bacteria 

Willey et al.,2007 
Field et al.,2008 

Bacteria 
(E.coli) 

Bacteriocins Colicins, microcins Nanomolar range, activity against 
Enterobacteriaceae 

Duquesne et al.,2007 
Nes et al.,2007 

Fungi Fungal Defensins Plectasin Activity multiple resistant Gram-
positive 

Mygind et al.,2005 

Plants Plant Defensins Ib-AMP1-4 and cyclotides Micromolar range: antifungal, 
anti-HIV, anti parasites 

Colgrave et al.,2008 
Ireland et al.,2008 
Marcos et al.,2008 

Insects/ 
amphibians 

Insect/ 
amphibian 
cationic 
peptides 

Cecropin A, mellitin, 
magainins, temporins 

Micromolar range 
active against 
multidrug-resistant 
bacteria 

Bechinger, 1997; 
Giacometti et al.,2003 

Arachnida/ 
vertebrates 

Venom toxins/ 
b-defensins 

Defensin-like toxins 
(DLTs) 
in venom, and b-defensins

Micromolar range, 
active against 
multidrug-resistant 
bacteria mostly in a 
salt-dependent 
manner 

Yeaman & Yount, 2007;  
Warren et al.,2008 

Mammals ǂ-Defensins 
q-Defensins 
b-Defensins 

Human neutrophil 
defensins, 
enteric and epithelial 
defensins 

Micromolar range 
active against 
multidrug-resistant 
bacteria, and fungi and viruses 

Selsted & Ouellette, 2005; 
 Lehrer, 2007 

Higher 
vertebrates 

Cathelicidins Human LL-37, porcine 
PR-39, bovine indolicidin 

Micromolar range 
active against 
multidrug-resistant 
bacteria, and fungi and viruses 

Zanetti, 2005 

Humans 
 

Others Lactoferricin, and 
antimicrobial domain of 
lysozyme 

Micromolar range 
active against 
multidrug-resistant 
bacteria 

Brogden, 2005 

Table 1. Antimicrobial peptides diversity of origin, class and antimicrobial activity. Adapted 
from Sang & Blecha, 2008. 
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Bacillus species are efficient AMPs factories. Their AMPs are active against Gram-positive 
microorganisms, with some presenting broader activity against Gram-negative bacteria and 
fungi (Katz & Demain, 1977). The soil isolate B. cereus 8A produces an antibacterial 
substance, cerein 8A, which inhibits several Gram-positive bacteria including Bacillus spp., 
Streptococcus spp. and Listeria monocytogenes (Bizani & Brandelli, 2002). Iturins are 
lipopeptides produced by Bacillus subtilis that show antifungal activities against various 
pathogenic yeasts and molds. The antifungal activity of iturin is related to their interaction 
with the cytoplasm membrane of target cells leading to an increase in K+ permeability 
(Maget-Dana & Peypoux, 1994). Another antifungal lipopeptide complex produced by the 
Bacillus subtilis, the fengycin, was found inhibitory to filamentous fungi but not yeast 
(Vanittanakom et al., 1986). The mechanism of fengycin action was revealed as a two-state 
transition controlled by the lipopeptide concentration – one state being monomeric, not 
deeply anchored and nonperturbing lipopeptide and other burried, aggregated form 
responsible for membrane leakage and bioactivity (Deleu et al., 2008).    
A soil microorganism identified as Bacillus megaterium was found to produce several 
antibiotics (Pueyo et al., 2009). Analysis both by electron spray ionization (ESI) and matrix-
assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) 
identified these substances as lipopeptides. Predominant peaks at m/z 1,041 and m/z 1,065 
revealed ions which were compatible with surfactins and lichenysins, respectively. Two 
other ions m/z 1,057 and m/z 1,464 were further studied by collision-induced dissociation 
(CID) unveiling an iturin A at the first and fengycins A and B at the second m/z peaks. The 
CID spectrum of the m/z 1,464 ion also suggested the existence of fengycins A and B 
variants in which Ile was changed to Val in the position 10 of the peptide moiety. This 
mixture of lipopeptides isolated from B. megaterium was very effective against B. cereus. The 
culture did not grow after the exposure to 12 µg/mL of the lipopeptides mixture for 30 
minutes.  
Many AMPs are produced by fungi. The most widely used and historic antibiotic to date, 
penicillin, was from the fungus Penicillium chrysogenum, previously named Penicillium 

notatum. Plectasin is the first identified fungal defensin derivated from Pseudoplectania 

nigrella, a black saprophytic asomycetes. This defensin was active against antibiotic-resistant 
strains of Streptococcus pneumoniae with rates similar to penicillin and vancomycin 
presented, efficacy in treating peritonitis and pneumonia in mice, and showed therapeutic 
potential as antifungal compound (Mygind et al., 2005). Anafp, another antifungal peptide 
obtained from the culture supernatant of Aspergillus niger inhibited various yeast strains as 
well as filamentous fungi at low concentrations (Lee et al., 1999). A novel antifungal peptide 
named ‘AcAFP’ from Aspergillus clavatus exhibited thermostability and is promising due to 
its thermostability at 100°C for 1 h and strong inhibitory activity against mycelial growth of 
several molds including Fusarium oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinera 
and Alternaria solani (Skouri-Gargouri & Gargouri, 2008). A 6.0-kDa antimicrobial peptide 
from Aspergillus clavatus ES1, designated as AcAMP, was isolated by a one-step heat 
treatment, was sensitive to proteolytic enzymes, stable between pH 5.0 and 10.0, and heat 
resistant (15 min at 100°C) (Hajji et al., 2010). AcAMP exhibited antibacterial activity against 
several Gram-positive and -negative bacteria. Based on all these features, AcAMP can be 
considered as a promising new member of the restraint family of ascomycete antimicrobial 
peptides that might be used in biological control of plant diseases and also for potential 
applications in food preservation.  
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The mode of action of the cationic and amphiphilic AMPs has been associated with their 
electrostatic attraction to the microbial cell surfaces, which contain negatively charged and 
acidic polymers, such as lipopolysaccharides (Gram negative bacteria), and wall-associated 
teicoic acids (Gram-positive bacteria). They transit the outer membrane of the Gram 
negative bacteria via self-promoted uptake (Hancock & Lehrer, 1998). Subsequently these 
peptides contact the anionic surface of the cytoplasmic membrane and insert in a manner 
such that they initially straddle the interface of the hydrophilic head groups and the fatty 
acyl chains of membrane phospholipids. After insertion into the membrane, antimicrobial 
peptides act by either disrupting the physical integrity of the bilayer, via membrane 
thinning, transient poration and/or disruption of the barrier function, or translocate across 
the membrane and act on internal targets (Hancock & Sahl, 2006). 
Several complex and controversial models describe these subsequent events, including the 
reorientation of peptide molecules perpendicular to the membrane to form either barrel-stave 
or toroidal channels, the breakdown of membrane integrity as a result of the swamping of 
membrane charge by a ‘carpet’ of peptides at the interface, the detergent-like dissolution of 
patches of membrane and the formation of peptide-lipid aggregates within the bilayer (Jenssen 
et al., 2006). Each of these successfully predicts the ability of cationic antimicrobial peptides to 
break down the cytoplasmic membrane, but only the toroidal channel and aggregate models 
explain the action of certain peptides on cytoplasmic targets. Indeed, the action of many 
peptides cannot be explained by disruption of membrane permeability barriers, as discussed 
in several reviews (Yeaman & Yount, 2003; Jenssen et al., 2006; Peschel & Sahl, 2006). Figure 8 
shows mechanisms of action for conventional antibiotics and AMPs. 
 

 
Fig. 8. Mechanism of action for conventional antibiotics and AMPs. Reproduced with 
permission from Sang, Y. & Blecha, F., Antimicrobial peptides and bacteriocins: alternatives 
to traditional antibiotics, Animal Health Research Reviews, 9, 2, 227-235, 2008. Copyright 
2008 Cambridge Journals. 
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Bacitracin, ǃ-lactams and glycopeptides action is related to the inhibition of cell wall 
synthesis whereas trimethoprim, quinolones, nitrofurantoin, rifampin, aminoglycosides, 
macrolides and tetracyclines inhibit DNA, RNA or protein synthesis. However, recent 
observations suggest that AMPs besides insert and damage of the cytoplasmatic membranes 
of target cells, peptides may also interact with intracellular targets such as DNA and RNA, 
presumably interfering with their metabolic functions and thus leading to cell death 
(Brogden, 2005; Hale & Hancock, 2007). They can alter cytoplasmic membrane septum 
formation; inhibit cell wall synthesis; inhibit nucleic acid and protein synthesis; or inhibit 
enzymatic activity (Brogden, 2005). 
Antibiotics and AMPs have a mixed history so does the development of their applications. 
Polymyxin B and gramicidin S have been used in the clinic and as topical over-the-counter 
medicines for a long time, and the cationic lantibiotic nisin has been used as an antimicrobial 
food additive. In contrast, despite several series of clinical trials, only one of the new 
generation (designer) cationic antimicrobial peptides has demonstrated efficacy in phase 3 
clinical trials. Nevertheless, given their exceptionally broad activity spectra, which for a 
single peptide can include activity against Gram-negative and Gram-positive bacteria, fungi 
as well as viruses and parasites, still substantial interest remains in exploiting the potential 
of these molecules (Hancock & Sahl, 2006). 
Some AMP-based antibiotic formulations are at preclinical stages with some proceeding to 
clinical trials (Andrès & Dimarcq, 2005; Gordon et al., 2005; McPhee & Hancock, 2005; 
Hancock & Sahl, 2006). Nisin, a LAB lantibiotic, is one of few examples of AMP-based 
antibiotic therapies that have been commercialized. AMP-based drugs derived from insect 
cecropin B and bovine indolicidin have progressed to clinical trials to treat wounds or skin-
related infections in humans, applications that may also be used in veterinary medicine 
(Hancock & Sahl, 2006; Scott et al., 2007). Some drugs under testing are derivatives of AMPs 
that have been modified to improve their antimicrobial activity. These modifications include 
introducing non-natural residues like D-amino acids, addition of C-terminal amidation and 
catalysis of cyclic formation, which are believed to improve stability and activity against 
targeted micro-organisms as shown in natural bacteriocins, plant cyclotides and primate q-
defensins (Lehrer, 2007; Bansal et al., 2008; Ireland et al., 2008). Optimized design of 
synthetic peptides based on knowledge from natural AMP studies (the concept of ‘designer 
AMPs’) may provide a feasible way to increase novel drug development (Scott et al., 2007; 
Jenssen et al., 2008). Short antimicrobial peptides with nine and eleven residues were 
developed against several clinically important bacterial and fungal pathogens such as E. coli, 
P. aeruginosa, S. aureus, C. albicans and Fusarium solani (Qi et al., 2010). Twelve analogues of 
previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were 
designed, synthesized, and tested for their antimicrobial activities. Two of eleven amino acid 
peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1–12.5 
µg/mL against all five pathogens. The MICs of these two peptides against S. aureus, C. 

albicans and F. solani are four to ten times lower than the corresponding MICs of the 
reference peptide BP76. P9-4 (KWRRWIRWL), newly designed nine-amino acid analogue, 
also has particularly low MICs of 3.1–6.2 microgram/mL against four of the tested 
pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2–50 
micrograms/mL). These new peptides (P11-5, P11-6 and P9- 4) also exhibit improved 
stability in the presence of salts, and have low cytotoxicity as shown by the haemolysis and 
MTT assays. From the results of field-emission scanning electron microscopy, membrane 
depolarization and dye-leakage assays, were propose that these peptides exert their action 
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by disrupting lipid membranes. Molecular dynamics simulation studies confirm that P11-6 
peptide maintains relatively stable helical structure and exerts more perturbation action on 
the order of acyl tail of lipid bilayers (Qi et al., 2010). A series of AMP´s incorporating the 
un-natural amino-acids Tic-Oic have been developed. Herein the in vitro activity of these 
peptides, including ten new compounds, against eight potential bio-terrorism bacteria 
agents and three other bacterial strains were tested. These peptides exhibit a wide range of 
organism potency and selectivity (Venugopal et al., 2010). 
Endogenous antibiotics are antimicrobial peptides called host defense peptides and 
participate in multiple aspects of immunity (inflammation, wound repair, and regulation of 
the adaptive immune system) as well as in maintaining homeostasis (Auvynet & Rosestein, 
2009; Pathan et al., 2010). The possibility of utilizing these multifunctional molecules to 
effectively combat the ever-growing group of antibiotic-resistant pathogens has intensified 
research aimed at improving their antibiotic activity and therapeutic potential, without the 
burden of an exacerbated inflammatory response, but conserving their immunomodulatory 
potential. Because of their wide involvement in inflammatory response and the emerging 
role of inflammation in atherosclerosis, antimicrobial peptides have been proposed to 
represent an important link between inflammation and the pathogenesis of atherosclerotic 
cardiovascular diseases (Li, 2009). The synthesis of AMPs and the development of analogues 
is an option for their use in humans. Another interesting approach was to induce the 
endogenous production of these peptides, which would avoid the possible toxicity and 
adverse systemic reactions, as well as the difficulty to deliver them in integral form to the 
desired sites of action (Guani-Guerra et al., 2010). The increasing incidence of antibiotic-
resistant bacterial infections is one of the greatest challenges faced by modern medicine with 
an obvious need for new effective and safe treatments. Thanks to AMPs multifunctional 
properties, the development of resistance by microorganisms towards AMPs is more 
difficult. Eventually, AMPs may become useful therapeutic tools. 

6. Conclusion 

Antimicrobial films and surfaces have been produced from impregnation of materials and 
coatings with antimicrobials, deposition of coatings with antimicrobial covalent 
modifications and biodegradable materials. These films prevent adhesion and colonization 
of pathogenic microorganisms and are important for designing biomedical devices and food 
packaging. Antimicrobial particles have been obtained from inorganic, metal and composite 
materials, polymers, lipids and a variety of hybrid combinations. They are important in 
disinfection, sterilization and in impregnation of materials to become antimicrobials. In 
therapy against infectious diseases, antimicrobial particles, liposomes and antimicrobial 
peptides provided several instances of improvement of the therapeutic index for a variety of 
formulations. The future will probably witness important novel developments in applied 
research regarding antimicrobial hybrid and composite systems by themselves or in efficient 
combinations with drugs.   
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