1,252 research outputs found

    Variability Characterization of the Olive Species Regarding Virgin Olive Oil Aroma Compounds by Multivariate Analysis of GC Data

    Get PDF
    Virgin olive oil is characterized by its unique aroma, which is synthesized when olive fruits are crushed during the industrial process used for oil production. The genetic variability of the major volatile compounds comprising the oil aroma was studied in a representative sample of olive cultivars from the World Olive Germplasm Collection (IFAPA, Cordoba, Spain). The analytical data demonstrated that a high degree of variability for the content of volatile compounds is found in the olive species and that most of the volatile compounds found in the oils were synthetized by the enzymes included in the so-called lipoxygenase pathway. The use of multivariate analysis to identify cultivars is particularly interesting in terms of volatile composition and deduced organoleptic quality. It can be used for identification of old olive cultivars that give rise to oils with a high organoleptic quality and in parent selection for olive breeding programs

    Structural changes in biscuits made with cellulose emulsions as fat replacers

    Get PDF
    [EN] Biscuits are a popular baked cereal food much appreciated by consumers. In the last few years, cellulose derivatives have been successfully used as fat replacers in biscuits. In this way, not only is the total amount of fat reduced but also the saturated fatty acids and the trans fatty acids are eliminated. The aim of this study is to increase understanding of the functionality of different cellulose ether emulsions used as fat replacers in biscuits. For this purpose, three emulsions with different cellulose ethers were designed: hydroxypropyl methylcellulose, methylcellulose and methylcellulose with greater methoxyl substitution (MCH). The microstructure and textural properties of the doughs and biscuits prepared with these emulsions were studied and the effects of cellulose types and glycerol as textural improver were also analysed. The results showed that the incorporation of glycerol in the doughs made with methylcellulose and hydroxypropyl methylcellulose cellulose emulsions seems to make the dough softer, bringing the values closer to those of the control dough; however, this effect disappears once the dough is baked. The presence of glycerol does not seem to have an effect on the hardness of the doughs and biscuits made using the methylcellulose with greater methoxyl substitution (MCH) emulsion.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors are grateful to the Spanish Ministry of Economy and Competitiveness for financial support (AGL2015-68923-C2) and gratefully acknowledge the financial support of EU FEDER funds.Teresa Sanz; Quiles Chuliá, MD.; Salvador Alcaraz, A.; Hernando Hernando, MI. (2017). Structural changes in biscuits made with cellulose emulsions as fat replacers. Food Science and Technology International. 23(6):480-489. https://doi.org/10.1177/1082013217703273S48048923

    Synthesis and Biological Evaluation of Modified 2-Deoxystreptamine Dimers

    Get PDF
    Aminoglycosides are powerful antibiotics, but the emergence of resistant bacterial strains has prompted the search for analogues with better pharmacological profiles. The synthesis of 2-deoxystreptamine (2-DOS) dimers linked by polyamines and analogues based on furylcarbopeptoid skeletons is described. Potent and selective ligands for bacterial 16S rRNA were identified using microarray techniques by determining the affinity of these derivatives toward bacterial and human ribosomal RNA

    Mice Lacking Thyroid Hormone Receptor β Show Enhanced Apoptosis and Delayed Liver Commitment for Proliferation after Partial Hepatectomy

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: The role of thyroid hormones and their receptors (TR) during liver regeneration after partial hepatectomy (PH) was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. [Methodology/Principal Findings]: Mice lacking TR alpha 1/TR beta or TR beta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting similar to 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS) 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA), a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1) in the regenerating liver of animals lacking TR alpha 1/TR beta or TR beta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. [Conclusions/Significance]: We report that TRs are not required for liver regeneration; however, hypothyroid mice and TR beta-or TR alpha 1/TR beta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRb in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRb that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRb contributes significantly to the rapid initial round of hepatocyte proliferation following PH, and improves the survival of the regenerating liver at later times.This work was supported by grants BFU2008-02161, BFU2007-62402, SAF2007-60511, and SAF2007-60551 from MICINN; S-BIO-0283/2006 from Comunidad de Madrid and FIS-RECAVA RD06/0014/0025 to L.B.; and PI05.0050, PI080070, and the Fundacion Mutua Madrileña to S.H. RECAVA and Ciberehd are funded by the Instituto de Salud Carlos III. R. L-F. is supported by a fellowship from Instituto de Salud Carlos III. The CNIC is supported by the Spanish Ministry of Science and Innovation and the Pro-CNIC Foundation.Peer reviewe

    Noninvasive monitoring of serial changes in pulmonary vascular resistance and acute vasodilator testing using cardiac magnetic resonance

    Get PDF
    Objectives The study sought to evaluate the ability of cardiac magnetic resonance (CMR) to monitor acute and long-term changes in pulmonary vascular resistance (PVR) noninvasively. Background PVR monitoring during the follow-up of patients with pulmonary hypertension (PH) and the response to vasodilator testing require invasive right heart catheterization. Methods An experimental study in pigs was designed to evaluate the ability of CMR to monitor: 1) an acute increase in PVR generated by acute pulmonary embolization (n = 10); 2) serial changes in PVR in chronic PH (n = 22); and 3) changes in PVR during vasodilator testing in chronic PH (n = 10). CMR studies were performed with simultaneous hemodynamic assessment using a CMR-compatible Swan-Ganz catheter. Average flow velocity in the main pulmonary artery (PA) was quantified with phase contrast imaging. Pearson correlation and mixed model analysis were used to correlate changes in PVR with changes in CMR-quantified PA velocity. Additionally, PVR was estimated from CMR data (PA velocity and right ventricular ejection fraction) using a formula previously validated. Results Changes in PA velocity strongly and inversely correlated with acute increases in PVR induced by pulmonary embolization (r = –0.92), serial PVR fluctuations in chronic PH (r = –0.89), and acute reductions during vasodilator testing (r = –0.89, p ≤ 0.01 for all). CMR-estimated PVR showed adequate agreement with invasive PVR (mean bias –1.1 Wood units,; 95% confidence interval: –5.9 to 3.7) and changes in both indices correlated strongly (r = 0.86, p < 0.01). Conclusions CMR allows for noninvasive monitoring of acute and chronic changes in PVR in PH. This capability may be valuable in the evaluation and follow-up of patients with PH

    Insights Into the Effect of Verticillium dahliae Defoliating-Pathotype Infection on the Content of Phenolic and Volatile Compounds Related to the Sensory Properties of Virgin Olive Oil

    Get PDF
    Verticillium wilt, caused by the defoliating pathotype of Verticillium dahliae, is the most devastating soil-borne fungal disease of olive trees, and leads to low yields and high rates of tree mortality in highly susceptible cultivars. The disease is widely distributed throughout the Mediterranean olive-growing region and is one of the major limiting factors of olive oil production. Other than effects on crop yield, little is known about the effect of the disease on the content of volatile compounds and phenolics that are produced during the oil extraction process and determine virgin olive oil (VOO) quality and commercial value. Here, we aim to study the effect of Verticillium wilt of the olive tree on the content of phenolic and volatile compounds related to the sensory properties of VOO. Results showed that synthesis of six and five straight-chain carbon volatile compounds were higher and lower, respectively, in oils extracted from infected trees. Pathogen infection affected volatile compounds known to be contributors to VOO aroma: average content of one of the main positive contributors to VOO aroma, (E)-hex-2-enal, was 38% higher in oils extracted from infected trees, whereas average content of the main unpleasant volatile compound, pent-1-en-3-one, was almost 50% lower. In contrast, there was a clear effect of pathogen infection on the content of compounds responsible for VOO taste, where average content of the main bitterness contributor, oleuropein aglycone, was 18% lower in oil extracted from infected plants, and content of oleocanthal, the main contributor to pungency, was 26% lower. We believe this is the first evidence of the effect of Verticillium wilt infection of olive trees on volatile compounds and phenolics that are responsible of the aroma, taste, and commercial value of VOO

    Myeloid cell deficiency of p38γ/p38δ protects against candidiasis and regulates antifungal immunity

    Get PDF
    Fundació la Marató de TV3 (GrantNumber(s): 20133431; Grant recipient(s): Ana Cuenda) Wellcome Trust (GrantNumber(s): 97377, 102705; Grant recipient(s): GORDON D. BROWN) Ministerio de Economía y Competitividad (GrantNumber(s): SAF2016-79792-R, SAF2014- 52009-R, SAF2013-45331-R; Grant recipient(s): Ana Cuenda, SUSANA ALEMANY) Medical Research Council (GrantNumber(s): MR/N006364/1; Grant recipient(s): GORDON D. BROWN) ERC Consolidator Grant (GrantNumber(s): 310372; Grant recipient(s): Mihai Netea)Peer reviewedPublisher PD
    corecore