12 research outputs found

    Contamination and oxidative stress biomarkers in estuarine fish following a mine tailing disaster

    Get PDF
    Background The Rio Doce estuary, in Brazil, was impacted by the deposition of iron mine tailings, caused by the collapse of a dam in 2015. Based on published baseline datasets, the estuary has been experiencing chronic trace metal contamination effects since 2017, with potential bioaccumulation in fishes and human health risks. As metal and metalloid concentrations in aquatic ecosystems pose severe threats to the aquatic biota, we hypothesized that the trace metals in estuarine sediments nearly two years after the disaster would lead to bioaccumulation in demersal fishes and result in the biosynthesis of metal-responsive proteins. Methods We measured As, Cd, Cr, Cu, Fe, Mn, Pb, Se and Zn concentrations in sediment samples in August 2017 and compared to published baseline levels. Also, trace metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se and Zn) and protein (metallothionein and reduced glutathione) concentrations were quantified in the liver and muscle tissues of five fish species (Cathorops spixii, Genidens genidens, Eugerres brasilianus, Diapterus rhombeus and Mugil sp.) from the estuary, commonly used as food sources by local populations. Results Our results revealed high trace metal concentrations in estuarine sediments, when compared to published baseline values for the same estuary. The demersal fish species C. spixii and G. genidens had the highest concentrations of As, Cr, Mn, Hg, and Se in both, hepatic and muscle, tissues. Trace metal bioaccumulation in fish was correlated with the biosynthesis of metallothionein and reduced glutathione in both, liver and muscle, tissues, suggesting active physiological responses to contamination sources. The trace metal concentrations determined in fish tissues were also present in the estuarine sediments at the time of this study. Some elements had concentrations above the maximum permissible limits for human consumption in fish muscles (e.g., As, Cr, Mn, Se and Zn), suggesting potential human health risks that require further studies. Our study supports the high biogeochemical mobility of toxic elements between sediments and the bottom-dwelling biota in estuarine ecosystems

    The novel mangrove environment and composition of the Amazon Delta

    Get PDF
    Both freshwater floodplain (várzeas and igapós) forests and brackish-saline mangroves are abundant and well-described ecosystems in Brazil.1 However, an interesting and unique wetland forest exists in the Amazon Delta where extensive mangroves occur in essentially freshwater tidal environments. Unlike the floodplain forests found upriver, the hydrology of these ecosystems is driven largely by large macro-tides of 4–8 m coupled with the significant freshwater discharge from the Amazon River. We explored these mangroves on the Amazon Delta (00°52ʹ N to 01°41ʹ N) and found surface water salinity to be consistently <5; soil pore water salinity in these mangrove forests ranged from 0 nearest the Amazon mouth to only 5–11 at the coastal margins to the north (01°41ʹ N, 49°55′ W). We also recorded a unique mix of mangrove-obligate (Avicennia sp., Rhizophora mangle) and facultative-wetland species (Mauritia flexuosa, Pterocarpus sp.) dominating these forests. This unique mix of plant species and soil porewater chemistry exists even along the coastal strands and active coastlines of the Atlantic Ocean. Part of these unique mangroves have escaped current global satellite mapping efforts, and we estimate that they may add over 180 km2 (20% increase in mangrove area) within the Amazon Delta. Despite having a unique structure and function, these freshwater-brackish ecosystems likely provide similar ecosystem services to most mangroves worldwide, such as sequestering large quantities of organic carbon, protection of shoreline ecosystems from erosion, and habitats to many terrestrial and aquatic species (monkeys, birds, crabs, and fish)

    A field study to describe diel, tidal and semilunar rhythms of larval release in an assemblage of tropical rocky shore crabs

    No full text
    Available information on the larval release rhythms of brachyurans is biased to temperate estuarine species and outcomes resulting from some sort of artificial manipulation of ovigerous females. In this study we applied field methods to describe the larval release rhythms of an assemblage of tropical rocky shore crabs. Sampling the broods of ovigerous females of Pachygrapsus transversus at two different shores indicated a spatially consistent semilunar pattern, with larval release maxima around the full and new moon. Yet, synchronism between populations varied considerably, with the pattern obtained at the site exposed to a lower wave action far more apparent. Breeding cohorts at one of the sampled shores apparently belonged to actual age groups composing the ovigerous population. The data suggest that these breeding groups release their larvae in alternate syzygy periods, responding to a lunar cycle instead of the semilunar pattern observed for the whole population. For the description of shorter-term rhythms, temporal series at hour intervals were obtained by sampling the plankton and confinement boxes where ovigerous females were held. Unexpectedly, diurnal release activity prevailed over nocturnal hatching. Yet, only grapsids living higher on the shore exhibited strong preferences over the diel cycle, with P. transversus releasing their larvae during the day and Geograpsus lividus during the night. The pea crab Dissodactylus crinitichelis, the spider crab Epialtus brasiliensis and a suite of xanthoids undertook considerable releasing activity in both periods. Apart from the commensal pea crab D. crinitichelis, all other taxa revealed tide-related rhythms of larval release, with average estimates of the time of maximum hatching always around the time of high tides; usually during the flooding and slack, rather than the ebbing tide. Data obtained for P. transversus females held in confinement boxes indicated that early larval release is mostly due to nocturnal hatching, while zoeal release in diurnal groups took place at the time of high tide. Since nocturnal high tides at the study area occurred late, sometimes close to dusk, early release would allow more time for offshore transport of larvae when the action of potential predators is reduced

    Substrate rugosity and temperature matters: patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic

    No full text
    Modeling and forecasting ocean ecosystems in a changing world will require advances in observational efforts to monitor marine biodiversity. One of the observational challenges in coastal reef ecosystems is to quantify benthic and climate interactions which are key to community dynamics across habitats. Habitat complexity (i.e., substrate rugosity) on intertidal reefs can be an important variable explaining benthic diversity and taxa composition, but the association between substrate and seasonal variability is poorly understood on lateritic reefs in the South Atlantic. We asked if benthic assemblages on intertidal reefs with distinct substrate rugosity would follow similar seasonal patterns of succession following meteo-oceanographic variability in a tropical coastal area of Brazil. We combined an innovative 3D imaging for measuring substrate rugosity with satellite monitoring to monitor spatio-temporal patterns of benthic assemblages. The dataset included monthly in situ surveys of substrate cover and taxon diversity and richness, temporal variability in meteo-oceanographic conditions, and reef structural complexity from four sites on the Eastern Marine Ecoregion of Brazil. Additionally, correlation coefficients between temperature and both benthic diversity and community composition from one year of monitoring were used to project biodiversity trends under future warming scenarios. Our results revealed that benthic diversity and composition on intertidal reefs are strongly regulated by surface rugosity and sea surface temperatures, which control the dominance of macroalgae or corals. Intertidal reef biodiversity was positively correlated with reef rugosity which supports previous assertions of higher regional intertidal diversity on lateritic reefs that offer increased substrate complexity. Predicted warming temperatures in the Eastern Marine Ecoregion of Brazil will likely lead to a dominance of macroalgae taxa over the lateritic reefs and lower overall benthic diversity. Our findings indicate that rugosity is not only a useful tool for biodiversity mapping in reef intertidal ecosystems but also that spatial differences in rugosity would lead to very distinct biogeographic and temporal patterns. This study offers a unique baseline of benthic biodiversity on coastal marine habitats that is complementary to worldwide efforts to improve monitoring and management of coastal reefs

    Flow of mangrove ecosystem services to coastal communities in the Brazilian Amazon

    Get PDF
    Mangrove forests are broadly recognized to support a variety of ecosystem services on coastal margins worldwide. These services may significantly contribute to the wellbeing of millions of people, but there is limited information about their importance in the Global South. This study mapped for the first time the flow of ecosystem services in Brazilian Amazon mangroves, which represent over 700,000Â ha of mangroves in the country. We also identified the spatial changes in the flow of services across coastal landscapes, including urban, agricultural upland areas and coastal natural protected areas. Our matrix model indicated that mangroves, waterbodies, sandflats and mudflats are critical to the flow of multiple ecosystem services, including provisioning (fish, mariculture), cultural (historical and intrinsic value, research, and education), and regulation (climate, flood control, nursery, and breeding grounds). Social economic context, occupation, education, and residence time are important factors influencing villagers to identify the flow of ecosystem services, which could be compared across other coastal marine reserves in South America that have similar management of natural resources. Adjacent coastal upland habitats such as forests and croplands are important to support many provisioning ecosystem services to coastal villagers that would otherwise be obtained from mangroves, suggesting that protecting these connected habitats and supporting small-scale agriculture may help to avoid deforestation of mangrove forests. As over 80 of the mangroves in the country are managed as extractive reserves and may support communities with comparable socio-economic characteristics, we provide a foundation for the development and replication of ecosystem services assessments in Brazilian mangroves, which cover an area of over 1 million hectares. Our work highlights the importance of mangrove forests in providing food, and cultural services and to increase local climate resilience of coastal villages in the Amazon coast

    The inclusion of Amazon mangroves in Brazil’s REDD+ program

    Get PDF
    Abstract The Legal Amazon of Brazil holds vast mangrove forests, but a lack of awareness of their value has prevented their inclusion into results-based payments established by the United Nations Framework Convention on Climate Change. Based on an inventory from over 190 forest plots in Amazon mangroves, we estimate total ecosystem carbon stocks of 468 ± 67 Megagrams (Mg) ha−1; which are significantly higher than Brazilian upland biomes currently included into national carbon offset financing. Conversion of mangroves results in potential emissions of 1228 Mg CO2e ha−1, which are 3-fold higher than land use emissions from conversion of the Amazon rainforest. Our work provides the foundation for the inclusion of mangroves in Brazil’s intended Nationally Determined Contribution, and here we show that halting mangrove deforestation in the Legal Amazon would generate avoided emissions of 0.9 ± 0.3 Teragrams (Tg) CO2e yr−1; which is equivalent to the annual carbon accumulation in 82,400 ha of secondary forests

    Accelerating ocean species discovery and laying the foundations for the future of marine biodiversity research and monitoring

    No full text
    Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species

    Accelerating ocean species discovery and laying the foundations for the future of marine biodiversity research and monitoring

    No full text
    Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species
    corecore