10 research outputs found

    THP-1 Macrophages and SGBS Adipocytes – A New Human in vitro Model System of Inflamed Adipose Tissue

    Get PDF
    Obesity is associated with an accumulation of macrophages in adipose tissue. This inflammation of adipose tissue is a key event in the pathogenesis of several obesity-related disorders, particularly insulin resistance. Here, we summarized existing model systems that mimic the situation of inflamed adipose tissue in vitro, most of them being murine. Importantly, we introduce our newly established human model system which combines the THP-1 monocytic cell line and the preadipocyte cell strain Simpson–Golabi–Behmel syndrome (SGBS). THP-1 cells, which originate from an acute monocytic leukemia, differentiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS was recently introduced as a unique tool to study human fat cell functions. SGBS cells are characterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-stimulated de novo lipogenesis and β-adrenergic-stimulated lipolysis and they secrete typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-conditioned medium or a direct co-culture of macrophages and fat cells, our model system can be used to distinguish between paracrine and cell-contact dependent effects. In conclusion, we propose this model as a useful tool to study adipose inflammation in vitro. It represents an inexpensive, highly reproducible human system. The methods described here can be easily extended for usage of primary human macrophages and fat cells

    How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study

    No full text
    All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs

    Photochemical and thermal rearrangements of a benzoylnaphthobarrelene-like system

    No full text
    8-Benzoyl-9-deuterionaphtho[de-2.3.4]bicyclo[3.2.2]nona-2,6,8-triene (12a)rearranges in a photochemical di-π-methane-type process to the l-benzoylatho[de-[2.3.4]tricyclo[4.3.0.02,9]nona-3,7-dienes 14a-c.The dihydro derivate 13a and the hydroxypheoylmethyl analogs 21a and 22a undergo similarly regioselective rearrangements to 15a+c, 23a-c, and 24a, respectively. At 298 K the primary photoreaction directly occus from the S1(n,π∗) and T2(n,π∗) states, and it proceeds from T1(π,π∗) and from S2(π,π∗) either directly or via T2. At lower temperature on direct irradiation. S1→T intersystem crossing and triplet reaction compete with reaction from the singlet. The rearrangement 12a→14a-c proceeds along three reaction paths evolving from the two primary photochemical processes of naphthyl-vinyl and vinyl-vinyl bonding in β-position to the CO (12→25+29). Two ground-state triplet diradical intermediates such as 25 and 27 have been shown to intervene consecutively-for the first time in di-π-methane photochemistry. Each has been characterized by ESR and IR, and the second one additionally by fluorescence and fluorescence excitation, and by laser flash photolysis. The failure of products 14a-c to interconvert photochemically is ascribed to efficient energy dissipation through thermally reversible pbotocleavage of the 3-membered ring. Compounds 12 and 14 thermally interconvert in the dark which constitutes the first example of a ground-state counterpart of a di-π-methane photorearrangement. The thermal reaction includes a path with highly regioselective (and possibly concerted) product formation competing with a stepwise process causing positional scrambling. The sequence 12→14 (photochemically; φ = 1.0 at 366 nm and 298 K) and an electrophile-catalyzed reversal 14→12 in the dark is a model of a chemical light energy storage cycle which can be conducted without loss of reactants

    Microarray-Based Identification of a Novel Streptococcus pneumoniae Regulon Controlled by an Autoinduced Peptide

    No full text
    We have identified in the Streptococcus pneumoniae genome sequence a two-component system (TCS13, Blp [bacteriocin-like peptide]) which is closely related to quorum-sensing systems regulating cell density-dependent phenotypes such as the development of genetic competence or the production of antimicrobial peptides in lactic acid bacteria. In this study we present evidence that TCS13 is a peptide-sensing system that controls a regulon including genes encoding Blps. Downstream of the Blp TCS (BlpH R) we identified open reading frames (blpAB) that have the potential to encode an ABC transporter that is homologous to the ComA/B export system for the competence-stimulating peptide ComC. The putative translation product of blpC, a small gene located downstream of blpAB, has a leader peptide with a Gly-Gly motif. This leader peptide is typical of precursors processed by this family of transporters. Microarray-based expression profiling showed that a synthetic oligopeptide corresponding to the processed form of BlpC (BlpC*) induces a distinct set of 16 genes. The changes in the expression profile elicited by synthetic BlpC* depend on BlpH since insertional inactivation of its corresponding gene abolishes differential gene induction. Comparison of the promoter regions of the blp genes disclosed a conserved sequence element formed by two imperfect direct repeats upstream of extended −10 promoter elements. We propose that BlpH is the sensor for BlpC* and the conserved sequence element is a recognition sequence for the BlpR response regulator

    Machine learning-powered antibiotics phenotypic drug discovery

    No full text
    Identification of novel antibiotics remains a major challenge for drug discovery. The present study explores use of phenotypic readouts beyond classical antibacterial growth inhibition adopting a combined multiparametric high content screening and genomic approach. Deployment of the semi-automated bacterial phenotypic fingerprint (BPF) profiling platform in conjunction with a machine learning-powered dataset analysis, effectively allowed us to narrow down, compare and predict compound mode of action (MoA). The method identifies weak antibacterial hits allowing full exploitation of low potency hits frequently discovered by routine antibacterial screening. We demonstrate that BPF classification tool can be successfully used to guide chemical structure activity relationship optimization, enabling antibiotic development and that this approach can be fruitfully applied across species. The BPF classification tool could be potentially applied in primary screening, effectively enabling identification of novel antibacterial compound hits and differentiating their MoA, hence widening the known antibacterial chemical space of existing pharmaceutical compound libraries. More generally, beyond the specific objective of the present work, the proposed approach could be profitably applied to a broader range of diseases amenable to phenotypic drug discovery.ISSN:2045-232

    Discovery of 4‑Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys

    No full text
    Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(<i>R</i>)-<b>6</b> selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg<sup>–1</sup>. This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man
    corecore