
White-to-brown metabolic conversion
of human adipocytes by JAK inhibition

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Moisan, A., Y. Lee, J. D. Zhang, C. S. Hudak, C. A. Meyer, M.
Prummer, S. Zoffmann, et al. 2014. “White-to-brown metabolic
conversion of human adipocytes by JAK inhibition.” Nature cell
biology 17 (1): 57-67. doi:10.1038/ncb3075. http://dx.doi.org/10.1038/
ncb3075.

Published Version doi:10.1038/ncb3075

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820646

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=White-to-brown%20metabolic%20conversion%20of%20human%20adipocytes%20by%20JAK%20inhibition&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=69bc81b41f266ffd494ad492acb4c1e9&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820646
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


White-to-brown metabolic conversion of human adipocytes by 
JAK inhibition

Annie Moisan1, Youn-Kyoung Lee2,3, Jitao David Zhang1, Carolyn S. Hudak2,3, Claas A. 
Meyer1, Michael Prummer1, Sannah Zoffmann1, Hoa Hue Truong1, Martin Ebeling1, Anna 
Kiialainen1, Régine Gérard1, Fang Xia2,3, Robert T. Schinzel2,3, Kurt E. Amrein1, and Chad 
A. Cowan2,3

1 Roche Pharma Research and Early Development, Roche Innovation Center Basel, 124 
Grenzacherstrasse, Basel, CH 4070, Switzerland. 2 Department of Stem Cell and Regenerative 
Biology and Harvard Stem Cell Institute, Harvard University, Massachusetts 02138, USA 3 Center 
for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

Abstract

The rising incidence of obesity and related disorders such as diabetes and heart disease has 

focused considerable attention on the discovery of novel therapeutics. One promising approach 

has been to increase the number or activity of brown-like adipocytes in white adipose depots, as 

this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 

2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has 

become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform 

for the identification of small molecules capable of promoting a white-to-brown metabolic 

conversion in human adipocytes. We identified two inhibitors of Janus Kinase (JAK) activity with 

no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white 

adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 

expression and increased mitochondrial activity. We further found that repression of interferon 

signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the 

metabolic conversion observed in these cells. Our findings highlight a novel role for the JAK/
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STAT pathway in the control of adipocyte function and establish a platform to identify 

compounds for the treatment of obesity.

Mammals possess two distinct types of adipose tissue: white and brown fat. White adipose 

tissue (WAT) stores excess energy and has a number of endocrine functions such as 

regulating satiety via leptin secretion. In contrast, brown adipose tissue (BAT) maintains 

body temperature via non-shivering thermogenesis. BAT releases energy in the form of heat 

by uncoupling the respiratory chain via uncoupling protein 1 (UCP1). In addition to 

thermogenesis, BAT activation in rodents accelerated plasma clearance of triglycerides, 

ameliorated insulin resistance and protected against obesity1, 2. Recently, PET/CT imaging 

revealed adipose tissue with thermogenic activity and UCP1 expression in human adults3. 

These studies also found that BAT is inversely associated with adiposity, high body mass 

index and hyperglycemia. Based on these findings, there has been an increased interest in 

BAT as a therapeutic target to treat metabolic disorders.

Mouse studies have reported the emergence of UCP1-expressing cells in WAT upon cold 

exposure, β-adrenergic stimulation and peroxisome proliferator-activated receptor gamma 

(PPARG) activation4-10, a phenomenon referred to as browning. These brown-like cells 

arise from the recruitment of specific precursor cells11 and/or the conversion of white into 

brown-like cells12. Two human trials have also demonstrated de novo generation of brown 

adipocytes upon cold acclimation combined with increased non-shivering thermogenesis and 

decreased body fat mass13, 14. These studies suggest identifying inducers of browning in 

humans may ameliorate obesity related diseases. To this end, we established a screening 

platform to discover small molecules capable of promoting white-to-brown metabolic 

conversion in human adipocytes and identified Janus kinase (JAK) inhibitors as molecules 

with browning potential. In addition, we show that human pluripotent stem cell-derived 

adipocytes provide a scalable, robust and reliable cell model for adipocyte browning studies, 

compound screening and drug discovery.

RESULTS

A screening platform for adipocyte browning identifies inducers of UCP1

We used a human pluripotent stem cell (PSC)-derived adipocyte model to study the 

pharmacological conversion of white to brown-like adipocytes. In this approach, adipocytes 

are obtained via the inducible expression of transcription factors in PSC-derived 

mesenchymal progenitor cells (MPCs) and the addition of an adipogenic cocktail to the 

media15. Inducible expression of peroxisome proliferator-activated receptor gamma2 

(PPARG2) alone or a combination of PPARG2, CCAAT/enhancer-binding protein beta 

(CEBPB) and PR domain containing 16 (PRDM16) drives cell differentiation towards the 

white (PSC-WA) or brown (PSC-BA) lineage respectively15. We reasoned that CEBPB and 

PRDM16 could be replaced by small molecules to direct PPARG2-expressing MPCs 

towards a brown-like phenotype (Fig. 1a). We monitored the responsiveness of PSC-WA to 

known modulators of UCP1 expression16 and observed up-regulation of UCP1 mRNA 

levels upon treatment with forskolin, 3-isobutyl-1-methylxanthine (IBMX), rosiglitazone 
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and bone morphogenic protein 7 (BMP7), validating the use of PSC-WA for browning 

assays (Supplementary Figure 1).

Utilizing this model we established a screening assay for assessing the conversion of white 

to brown-like adipocytes (Figure 1b). A focused library of 867 small molecules that has a 

large degree of activity annotation, facilitating deconvolution of mechanism of action was 

applied at day 7, when cells are differentiating and will adopt a white phenotype if no 

additional stimulus is applied. Adipocytes were exposed to compounds for 7 days and 

collected at day 14 for analysis. As a browning index, UCP1 expression was monitored by 

UCP1 mRNA capture plates followed by branched DNA amplification. Expression of fatty 

acid binding protein 4 (FABP4), an adipocyte specific gene, served as internal control to 

eliminate anti and pro-adipogenic compounds not specific to UCP1, such as the PPARG 

agonist rosiglitazone (Fig. 1c, red dot). Out of 135 UCP1 inducers (see online methods for 

statistical analysis), 52 compounds induced both UCP1 and FABP4 levels (Fig. 1c, blue 

dots). Among the 83 compounds that induced UCP1 specifically (Fig. 1c, green dots), 

compounds that induced UCP1 at least 2 fold were selected as browning hits and compared 

to rosiglitazone-like compounds in an independent experiment (Fig. 1d and Supplementary 

Table 1). UCP1 induction by thyroid hormone receptor beta (THRB) agonists and 

phosphodiesterase enzyme 3 (PDE3) inhibitors is in accordance with previously reported up-

regulation of UCP1 promoter activity by thyroid hormone and cAMP17-20. Of particular 

interest, three annotated inhibitors of Spleen Tyrosine Kinase (SYK) and two inhibitors of 

Janus Kinase 3 (JAK3) showed the highest UCP1/FABP4 ratio. JAK3 and SYK are best 

characterized for their role in immune cells development and physiology and as mediators of 

pro-inflammatory pathways21. Recently, the JAK-STAT pathway was found to modulate 

early adipogenesis upstream of PPARG but little evidence supported a role in adipose tissue 

remodeling and thermogenicity22.

A subset of UCP1-inducers modulate adipocyte lipid droplet morphology

White adipocytes have a single or a few large lipid droplets, whereas the brown adipocytes 

contain multiple small lipid droplets. We exploited this morphological difference to evaluate 

the browning effects of newly identified UCP1-inducer compounds. Following treatment of 

PSC-WA with selected compounds (Fig. 1b), we used fluorescent dyes to mark nuclei and 

lipid droplets, and performed high content imaging to quantify the number and size of lipid 

droplets per cell. After 7 days of treatment with selected JAK3 and SYK inhibitors, we 

observed changes in lipid droplet morphology that are typical of brown-like adipocytes (Fig. 

2a). Contrastingly, a THRB agonist was inert in this assay despite elevation of UCP1 

expression (Fig. 2a and 1d). We determined the lipid area of small (<1070μm2) and large 

(>1070μm2) droplets per well (Fig. 2b, curve graphs) and used the ratio small/large droplet 

area as a ‘brown-like lipid index’ for each compound, as exemplified in Figure 2c for 

DMSO, JAK3 inhibitor, SYK inhibitor and THRB agonist. A total of 39 compounds that 

induced UCP1 or displayed visible effects on lipid morphology during the browning screen 

were thereby quantified and ascribed a brown-like lipid index (Fig. 2d, Y-axis). When the 

two browning indices were taken into account, i.e. UCP1/FABP4 and lipid droplet 

morphology, JAK3 and SYK inhibitors were the most potent browning compounds from our 

screen (Fig. 2d). In addition, this analysis revealed that brown-like lipid morphology was 
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poorly correlated with elevated UCP1 expression, indicating that quantification oflipid 

droplet size is not a suitable phenotypic readout for adipocyte browning, at least in our 

system.

Validation of tofacitinib and R406 browning compounds in primary adipocytes

As model browning compounds, we selected the JAK3 inhibitor tofacitinib and the SYK 

inhibitor R406 for their potency in our browning assay and for their clinical relevance 

(Supplementary Figure 3). We examined the dose-response of tofacitinib and R406 in PSC-

WA and found that the UCP1/FABP4 ratio reaches a plateau at 2 μM for tofacitinib and 1 

μM for R406 (Fig. 3a). Graphical representation of UCP1 and FABP4 normalized on 

housekeeping gene revealed a UCP1-specific effect of tofacitinib, while R406 induced both 

UCP1 and FABP4 expression when dosed above 1 μM (Fig. 3a). We confirmed that 

tofacitinib and R406-mediated increases in UCP1 mRNA levels translated into 

accumulation of UCP1 protein (Fig. 3b) and observed concomitant elevation in PRDM16 

protein (Fig. 3b).

Importantly, we validated the effects of tofacitinib and R406 on UCP1 and FABP4 

expression in lentiviral-free, human primary adipose tissue-derived stem cells (ADSCs) 

differentiated according to standard procedures (Fig. 3c). Tofacitinib and R406 also caused 

the emergence of brown-like lipid droplet morphologies in ADSC-derived adipocyte 

cultures and appeared superior to BMP7 in this assay (Fig. 3d). Finally, we subjected mouse 

white adipose tissue explants to increasing doses of tofacitinib and R406 and observed up-

regulation of UCP1 expression in explants of sub-cutaneous, but not visceral, origin (Fig. 3e 

and Supplementary Figure 4).

Tofacitinib and R406 block the JAK-STAT1/3 pathway during adipocyte browning

Tofacitinib is a potent inhibitor of signaling through JAK1 and JAK3 with 5-100 fold 

selectivity over JAK2 in cell-based assays23, 24. R406 is described as a potent and specific 

SYK inhibitor, but also targets JAKs, c-kit, Lck, and FLT3 when profiled at 2 μM25. We 

sought to determine the pharmacological signature of tofacitinib and R406 in human 

adipocytes where target abundance and signaling activity might differ from immune cells. 

First we used RNA sequencing analysis of PSC-WA to evaluate the abundance of known 

targets of tofacitinib and R406. JAK1 was the most abundantly expressed member of the 

Janus kinase family, followed by Tyk2, JAK2 and JAK3 (Figure 4a). The abundance of 

SYK, c-kit, Lck and FLT3 was below statistical significance suggesting that R406 may exert 

its browning effect via JAK inhibition.

To profile possible downstream targets, PSC-WA were treated with tofacitinib and R406 at 

the determined ‘browning dose’ (2 and 1 μM respectively) for 20 minutes and screened by 

reverse phase protein array (RPPA) covering 51 different phospho-isoforms. RPPA analysis 

revealed STAT3 as the main downstream target for both tofacitinib and R406 

(Supplementary Figure 5). While the effect of tofacitinib was restricted to STAT3 in the 

RPPA panel, R406 had additional downstream targets including AKT, EGFR and ERK1/2 

(Supplementary Figure 5). We further investigated the effect of tofacitinib and R406 on 

JAK/STAT, AKT and ERK1/2 pathways by immunoblot analysis. As shown in Figure 4b, 
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tofacitinib and R406 blocked tyrosine phosphorylation of STAT1 and STAT3 after 20 

minutes, an effect that is exacerbated upon 7 days of treatment. In a dose response 

experiment, the gradual increase in UCP1 levels negatively correlated with STAT3 

phosphorylation (Fig. 4c). Noticeably, STAT1 protein level decreased after treatment with 

tofacitinib and R406. Tofacitinib had no effect on AKT and MAPKs, whereas R406 

significantly decreased the phosphorylation level of AKT, ERK1 and ERK2 (Fig. 4b). AKT 

phosphorylation was restored at day 7, suggesting an adaptive response to maintain 

adipocyte homeostasis and insulin signaling. Phospho-STAT5 was undetectable in our assay 

and p38 and JNKs were unaltered at both times. Thus, JAK inhibitors likely change UCP1 

expression via a different route than the cAMP/p38 pathway downstream of β3-adrenergic 

stimulation26, 27.

Tumor necrosis factor alpha (TNF-α) represses UCP1 expression in brown adipocytes28, an 

effect also observed in PSC-WA (Fig.4d). Since TNF-α can signal through JAK/STAT and 

ERK pathways, we tested CP-690550 and R406 ability to antagonize TNF-α repression of 

UCP1 expression. CP-690550 and R406 partially and fully restored UCP1 levels 

respectively, in agreement with the JAK/STAT-specific and JAK/STAT-ERK1/2 effects of 

each compound (Fig.4b). In addition, the combination of CP-690550 and R406 was not 

superior to R406 alone in increasing UCP1 expression (Fig.4e), supporting evidence that 

CP-690550 and R406 functionally overlap.

Finally, we tested Ruxolitinib, a JAK1/2 inhibitor, and observed up-regulation of UCP1 

expression without significant regulation of FABP4 with concomitant inhibition of STAT1/3 

phosphorylation (Fig. 4f). Three other JAK1/2 inhibitors, AZD1480, CYT387 and 

Baricitinib, also showed up-regulation of UCP1 expression (Fig. 4g). A combination of 

tofacitinib and Ruxolitinib did not further increase UCP1 expression (Fig. 4h, left panel), 

unlike a combination of tofacitinib with a THRB agonist (Fig. 4h, right panel). Altogether, 

the data highlight a central role for the JAK1/2-STAT1/3 pathway in UCP1 expression in 

adipocytes.

Progressive and stable conversion of adipocytes by JAK inhibition

Molecules that increase UCP1 expression by directly activating the UCP1 promoter26 may 

not be suitable for in vivo induction of browning or therapeutically useful to combat obesity. 

Alternative mechanisms of browning such as adipocyte metabolic remodeling are needed, 

and our screening platform was designed for this purpose. We examined the kinetics of 

tofacitinib and R406-mediated browning in comparison to THRB agonist, which also ranked 

in the top-10 best UCP1 inducers but failed to modify lipid droplet morphology (Fig. 1d and 

2). The UCP1 promoter contains a thyroid hormone responsive element (TRE)20 and as 

expected, a THRB agonist rapidly increased UCP1 levels (Fig. 5a). Contrastingly, UCP1 

mRNA levels increased more slowly and progressively in tofacitinib and R406-treated 

adipocytes (Fig. 5a), consistent with remodeling of cellular metabolism rather than direct 

modulation of UCP1 promoter activity.

If a stable white to brown-like conversion is achieved via JAK inhibition, the brown-like 

phenotype should persist upon removal of CP-690550 and R406. To test this, we selected 9 

inducers of UCP1 mRNA levels from the original screen and treated PSC-WA with each 

Moisan et al. Page 5

Nat Cell Biol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



compound for 7 days, washed with compound-free medium, and maintained in compound-

free medium for an additional 14 day-period (Fig. 5b). Remarkably, all cells pre-treated with 

JAK inhibitors displayed high levels of UCP1 mRNA and reduced lipid droplet size at day 

28 compared to DMSO-treated cells while all other compounds lost their browning effect 

after washout (Fig. 5b-c). Finally, we repeated the washout experiment with tofacitinib and 

R406 and added TNF-α at day 26, 48 hours prior to cells collection. Even in the absence of 

compounds, adipocytes pre-treated with tofacitinib and R406 maintained higher level of 

UCP1 when challenged with TNF-α (Fig. 5d). Altogether, these results indicate that JAK 

inhibition leads to the stable acquisition of brown-like metabolic properties in human 

adipocytes.

JAK-inactivated adipocytes acquire a brown-like metabolic program

Brown adipocytes are characterized by high mitochondrial content as well as high metabolic 

activity1. Mitochondrial content was assessed by determining the ratio of subunit I of 

Complex IV (COX-I), which is mitochondrial DNA-encoded, on the 70kDa subunit of 

Complex II (SDH-A), which is nuclear DNA-encoded. Quantification of COX-1 and SDH-

A immunoblots showed a significant up-regulation of mitochondrial content in R406 and 

tofacitinib-treated PSC-WA and ADSC adipocytes (Fig. 6a). To determine the impact of 

these changes on metabolic activity, oxygen consumption rate (OCR) was measured. We 

found that basal, uncoupled and maximal respiration were increased when PSC-WA and 

ADSC adipocytes were pre-treated for 7 days with tofacitinib or R406 as compare to a 

DMSO control (Fig. 6b). Thermogenesis in brown adipocytes is fuelled by lipid catabolism, 

which can be measured by release of glycerol from fatty acid. We quantified the level of free 

glycerol from adipocyte culture medium and observed a ~2.5 fold increase of basal lipolysis 

in tofacitinib and R406-treated adipocytes (Fig. 6c), but no significant increase in forskolin 

(FSK) stimulated lipolysis (Fig. 6c). Altogether, these data suggest the engagement of a 

brown-like metabolic program upon inhibition of JAK/STAT in human adipocytes.

JAK-inactivated adipocytes maintain a white adipocyte transcriptional identity

To determine whether tofacitinib and R406 treatment had converted the transcriptional 

identity of white adipocytes, we performed RNA sequencing and analyzed the whole 

transcriptome of MPC, PSC-WA, PSC-BA and compound-treated PSC-WA. We used 

multidimensional scaling to project expression data, where distances between samples 

reflect the differences between global gene expression profiles. As expected, PSC-WA and 

PSC-BA moved away from undifferentiated PSC-MPC, and away from each other (Fig. 7a). 

Despite the acquisition of a brown-like metabolic profile, tofacitinib and R406-treated PSC-

WA global expression profiles clustered with untreated PSC-WA samples and not with 

PSC-BA (Fig. 7a). Consistent with our findings, RNAseq analyses revealed a strong 

induction of UCP1 expression by tofacitinib and R406 (Fig. 7b). Among known positive 

regulators of brown adipogenesis, R406 promoted mRNA expression of PGC1α, PGC1β 

and PPARG (Supplementary Figure 6). Intriguingly, PRDM16 mRNA expression was 

decreased in treated-PSC-WA despite an increase at the protein level (Supplementary Figure 

6 and Fig. 3). These data indicate that adipocyte browning by JAK inhibition occurs by 

functionally remodelling white adipocytes and through the acquisition of brown-like 

metabolic activities rather than via cell fate conversion.
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Downregulation of IFN and activation of hedgehog signaling contribute to metabolic 
browning downstream of JAK inhibition

To decipher the molecular mechanisms underlying metabolic browning of adipocytes via 

JAK inhibition, gene set analyses were performed and enrichment scores calculated for 9116 

gene sets. Strikingly, all gene sets altered by tofacitinib were down-regulated, most 

prominently interferon (IFN) response (IFNα/β/γ), STAT1/3/5 pathway and pro-

inflammatory pathways (OSM and IRF) (Fig. 7c). Similarly, R406 largely attenuated IFN 

response and mediators of inflammation (OSM, TNF, chemokine) (Fig. 7c). Tofacitinib and 

R406 treated adipocytes closely resembled one another in the differential expression profiles 

of IFN targets, of which 25 genes where nearly equally regulated by the two inhibitors (Fig. 

7d and e). IFNα/β/γ bind to JAKs and activate STAT1/2/329. Thus the gene set enrichment 

score confirm our findings that tofacitinib and R406 inhibit the JAK-STAT pathway in 

adipocytes. The transcriptional changes downstream of R406 displayed a broader spectrum 

of regulated gene sets in comparison to tofacitinib including up-regulation of PPARG, 

SREBF and BMP target genes (Fig. 7c and Supplementary Figure 6), an observation in 

accordance with its positive effect on FABP4 expression (Fig. 3a).

We further interrogated RNAseq data for individual genes up-regulated in both tofacitinib 

and R406-treated PSC-WA. 54 genes were up-regulated by both compounds, 17 of which 

were BAT-specific (Supplementary Figure 6). Notably, we observed that GLI1 was up-

regulated in tofacitinib and R406-treated PSC-WA and in PSC-BA (Fig. 7f). Moreover, 

three GLI1-target genes, SFRP5, KLHL31 and SHH, were up-regulated, suggesting 

activation of sonic hedgehog (SHH) signalling downstream of JAK/STAT inhibition during 

adipocyte browning.

The common gene signature of tofacitinib and R406-treated PSC-WA suggests that 

inhibition of JAK/STAT signaling short-circuits the IFN/JAK/STAT positive feedback loop 

and thereby progressively alleviates anti-browning and/or activates browning signals. We 

verified this hypothesis by inducing a white phenotype after addition of IFNγ to PSC-WA, 

observable by the formation of unilocular lipid droplets, an effect that was reversed by 

addition of tofacitinib or R406 (Fig. 8a). Moreover, IFNγ treatment of PSC-WA and PSC-

BA decreased the UCP1/FABP4 ratio and increased expression of the white adipocyte 

marker HSL (Fig. 8b).

We observed that repression of IFN response was followed by up-regulation of BA-specific 

transcripts in tofacitinib and R406-treated PSC-WA including the GLI1 transcription factor 

(Fig. 7f). The previously reported antagonistic link between IFN and SHH30 prompted us to 

evaluate the functional relevance of up-regulation of GLI and GLI-target genes in tofacitinib 

and R406-mediated metabolic browning. To examine the contribution of SHH signalling 

downstream of JAK/STAT inhibition during metabolic browning of adipocytes, PSC-WA 

were subjected to increasing doses of cyclopamine, a SHH pathway inhibitor, in 

combination with DMSO, tofacitinib or R406 for 7 days. Addition of cyclopamine did not 

significantly alter gene expression in DMSO-treated PSC-WA but completely blocked 

tofacitinib-mediated induction of UCP1 expression (Fig. 8c). Interestingly, high doses of 

cyclopamine antagonized the effect of R406 on UCP1 expression but did not block the 
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induction of FABP4, thereby decoupling the regulation of UCP1 and FABP4 by R406 (Fig. 

8c). The up-regulation of PPARG activity by R406 (Supplementary Figure 6) likely 

accounts for this observation. UCP1 expression was also down-regulated in PSC-BA upon 

treatment with cyclopamine (Supplementary Figure 7). These results support a role for SHH 

signaling in the acquisition of brown-like properties in human adipocytes.

Overall, we provide evidence that inhibition of JAK down-regulates interferon signaling in 

human adipocytes. The persistent repression of IFN signaling relieves inhibition of the SHH 

pathway30 and thereby contributes to the upregulation of UCP1 and promotes the metabolic 

browning of adipocytes (Fig. 8d).

DISCUSSION

The remarkable phenomenon of adipocyte browning –or the emergence of brown-like 

adipocytes in white adipose depots– and its associated metabolic benefits has spurred 

interest in the discovery of pharmacotherapies targeting adipose tissue to treat metabolic 

diseases such as obesity and type 2 diabetes. Here, we established a small molecule screen to 

unravel pharmacologically accessible pathways capable of inducing a brown-like 

thermogenic program in human adipocytes. We identified tofacitinib and R406 as potent 

inducers of UCP1 and via secondary screening established their role in remodeling lipid 

droplet morphology in human adipocytes. We found that both compounds target the JAK-

STAT1/3 pathway in adipocytes and have a distinct progressive and long-lasting effect that 

confers brown-like metabolic properties to white adipocytes. Our results further highlight 

important antagonistic interplays between interferon and sonic hedgehog signaling in 

adipocyte function.

Our findings are in line with previously proposed functions of Hedgehog in determining 

white versus brown adipose cell fate31. By using the Hedgehog activator Smoothened 

Agonist (SAG) in various mouse cell lines, Pospisilik et al. showed that activation of 

Hedgehog blocks white, but not brown, adipocyte differentiation and solely in the absence 

of cAMP and glucocorticoid signaling. In our study, activation of Hedgehog signaling by 

JAK inhibition occurred in PPARG2 expressing cells in the presence of cAMP and 

glucocorticoid signaling and promoted the acquisition of a brown-like metabolic phenotype. 

It is thus conceivable that activation of Hedgehog signaling after adipogenesis is initiated 

and during the maturation of white adipocytes may promote the acquisition of brown-like 

properties. We further demonstrated that pharmacological inhibition of Hedgehog decreased 

UCP1 expression in genetically programmed BA and brown-like adipocytes. Interestingly, 

Pospisilik et al. reported the up-regulation of UCP1 mRNA levels in WAT and BAT tissue 

upon genetic activation of Hedgehog in the aP2-SufuKO mouse, reminiscent of the data 

presented here upon treatment with tofacitinib and R406. More recently, an antagonistic 

crosstalk between Hedgehog and IFNγ in white adipose tissue has been described, wherein 

inhibition of Hedgehog signaling by IFNγ rescues white adipocyte differentiation30. Our 

findings further reinforce and refine the role of an IFN-JAK/STAT-SHH axis in human 

adipocyte biology. A recent study by Derecka et al. revealed a positive role for Tyk2 and 

Stat3 in the regulation of Myf5+ pre-adipocyte differentiation and BAT development in 

mice32. In light of our findings, it will be interesting to investigate the role of TYK2/STAT3 
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and other JAK/STATs in committed, functional brown adipocytes. A fine tuning of the JAK/

STAT pathway at various stages of differentiation and maturation might be key for optimum 

BAT expansion and metabolic function.

The utility of JAK inhibition as a therapeutic for obesity is complicated by the well-

described role of this signalling pathway in the immune system. In fact, tofacitinib is 

currently approved in the United States to treat rheumatoid arthritis. Thus, if one were to 

envision targeting adipose tissue by in vivo administration of an IFN/JAK/STAT inhibitor or 

similar compound it would almost certainly need to be delivered locally and prevented from 

spreading systemically or alternatively targeted selectively to white adipocytes. One could 

also conceive of a cell-based therapy wherein JAK inhibition of patient-derived adipocytes 

ex vivo is followed by transplantation to treat obesity, but this therapeutic modality would 

need to overcome numerous and significant obstacles before becoming a reality. A further 

limitation of the current study is the lack of evidence that JAK inhibition would promote 

metabolic browning in vivo, in particular in humans were evidence supporting this 

phenomenon is scant. Thus, additional research is required before inhibition of IFN/JAK/

STAT signalling could be utilized therapeutically for the treatment of metabolic disorders.

Recent progress in the development of human embryonic stem cells and induced pluripotent 

stem cell -based models of disease have delivered unprecedented tools for basic research and 

translational medicine. However, their applicability for drug discovery remains to be fully 

realized. Here, we tested the suitability of a human PSC-derived adipocyte model15 for 

screening and functional browning assays. We found this model provided an inexhaustible 

and rapidly expandable source of human adipocytes for screening and downstream assays. 

Moreover, it proved easily scalable and highly reliable in our screening assay. The 

responsiveness of human PSC-derived adipocytes to known and newly identified browning 

molecules closely mirrored that of primary adipose derived stromal cells (ADSC) further 

validating this model for adipocyte cell fate and browning studies.

To conclude, we successfully performed a proof of concept screen utilizing an innovative 

stem cell-based model to identify compounds that convert human adipocytes to 

metabolically active brown-like cells. Given that this platform is amenable to very high-

throughput screening it has considerable potential to contribute to the discovery of novel 

biological modulators of adipocyte cell fate and function and possibly to the development of 

new drugs for patients with metabolic disorders.

METHODS

Maintenance of human MPCs and ADSCs and differentiation into adipocytes

MPCs, white adipocytes (PSC-WA) and brown adipocytes (PSC-BA) were generated and 

differentiated as described by Ahfeldt et al.15 with the following modifications: MPCs were 

derived from human embryonic stem cell line SA001 (Cellartis), MPCs were seeded at 75% 

confluency in 15 cm dishes, incubated overnight with lentiviral particles at an MOI of 50 for 

each virus and maintained in growth medium without virus for 24 hours. Infected MPCs 

(herein PPARG2-MPCs) were counted and seeded in 96 well plates at a density of 37 500 

cells/cm2 in growth medium. The next day (Day 0), growth medium was changed for 
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induction medium consisting of adipocyte medium (DMEM, Knockout Replacement Serum, 

non-essential amino acids, insulin, dexamethasone) supplemented with 700 ng/ml 

doxycycline and 0.5 μM rosiglitazone. 72 hours later (Day 3), induction medium was 

replaced by differentiation medium (adipocyte medium supplemented with 700 ng/ml 

doxycycline) for 96 hours. From day 7, white (PSC-WA) and brown (PSC-BA) adipocytes 

were maintained in adipocyte medium and refreshed every two or three days.

Adipose tissue-derived stem cells (ADSCs) were obtained from PromoCell (human 

mesenchymal stem cell from adipose tissue or hMSC-AT, catalog number C-12977) and 

maintained in mesenchymal stem cell growth medium (PromoCell C-28010) according to 

manufacturer's instructions. For differentiation studies, ADSCs were seeded in 96 well 

plates at a density of 37 500 cells/ cm2. At 90% confluency, growth medium was changed 

for adipogenic differentiation medium (PromoCell C-28011) and refreshed every third day.

Compound library for adipocyte browning screen

A library of 867 small molecules of known mode of action was assembled by combining 

Roche internal reference compounds and commercially available screening libraries 

(Tocriscreen Collections #3514 Kinase inhibitor toolbox, Selleckchem Stem cell #L2100, 

Selleckchem Epigenetic #L1900 and Selleckchem GPCR #L2200). All compounds were 

pre-dissolved in DMSO, diluted to 5mM stock solutions and stored at -80°C. A list of 

compounds ID, mode of action and CAS numbers is available upon request.

Browning screen, statistical analysis and hit validation

PPARG2-MPCs were seeded in 96-well plates, induced and differentiated into PSC-WA as 

described above. A library of small molecules was applied at a 5 μM final concentration in 

biological duplicates at day 7, 10 and 12 in fresh adipogenic medium. DMSO and 

rosiglitazone (0.5 μM final concentration) were included on each plate as negative and 

positive controls respectively. Adipocytes were collected at day 14 and processed for UCP1 

and FABP4 mRNA analysis by bDNA.

For statistical analysis, the raw mRNA signal was log-transformed and normalized to fold-

change of the per plate median of the negative controls for all calculations, xnorm = 

log(sraw)/Mneg, where Mneg = medianplage{log(sneg)}. The data quality was assessed by 

calculating the Z’ factor based on positive and negative controls for each plate 

(Supplementary Figure 1b). For UCP1, <Z’> = 0.50, and Z’ > 0.50 for 11 out of 24 plates; 

for FABP4, <Z’> = 0.64, and Z’ > 0.50 for 18 out of 24 plates. This is characteristic for a 

good quality HCS34. To evaluate the replicates performance, biological duplicates were 

aggregated to their mean; 5% of the compounds were excluded from further analysis since 

their UCP1 difference was larger than 0.07; Supplementary Figure 1c shows that the 

replicate difference distribution is constant over the entire range, suggesting a constant 

replicate variance.

The remaining 832 compounds were used for hit selection as described before35. Knowing 

the constant variance from the controls, a p-value could be assigned to each compound 

following the test statistics T = (xnorm − 1)/σneg, where σneg = MADplate{log(sneg)}, 
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xnorm(Mneg) = 1, which is normal distributed for inactive compounds (i.e., under the null 

hypothesis H0). We next estimated the false discovery rate (FDR) by p-value distribution 

analysis36 and applied a selection threshold of <0.01. Supplementary Figure 1d, left panel, 

illustrates the selected primary actives among the non-selected compounds in a quantile-

quantile plot and the p-value distribution (inset). Next, a second hit selection process for 

FABP4 was included, again at a FDR cutoff <0.01 (Supplementary Figure 1d, right panel). 

We thereby found 135 UCP1 hits, of which 52 were assigned as “Rosiglitazone-like” 

compounds that induced both UCP1 and FABP4. In the validation experiment, we selected 

browning hits that induced UCP1 by at least two fold and UCP1/FABP4 by at least 1.5 fold. 

PPAR agonists were also included for a total of 33 re-tested compounds, of which 26 were 

confirmed (Supplementary Figure 1d, left panel). 15 validated hits and PPAR agonists are 

displayed in figure 1d and chemical names are provided in Supplementary Table 1.

High content imaging

At day 14 of browning assay, cells were fixed with 4% Paraformaldehyde in PBS for 15 

minutes at room temperature, incubated with blocking buffer (5% Donkey Serum, 0.5% 

triton X-100 and 0.02% Azid NaN3 in PBS) for 30 minutes at RT and stained with 10 μM 

Hoechst [B2261, Sigma] and 20ng/ml of Bodipy ® 493/503 (D-3922, Life technologies) in 

PBS for 30 minutes at room temperature. Samples were kept in PBS. Fluorescence Images 

where acquired using the Opera QEHS reader (Perkin-Elmer, Hamburg, Germany) equipped 

with a Nipkow Spinning disc for confocality using a 20× objective. Hoechst stain was 

imaged with laser excitation at 405nm laser and a 455/70nm band path filter for emission. 

The lipid stain was imaged using laser excitation at 488nm, and a 535/60nm / BP filter for 

emission. The image segmentation was done with the instrument integrated software 

Acapella. A custom made algorithm was used to identify the morphologically heterologous 

nuclei in the mixed cell population: Larger, round and relatively dark (brown adipocytes, 

non-differentiated cells); smaller, bright, more irregular shaped nuclei (white). The lipid 

droplets were segmented independently as either larger round bright objects or darker spots 

and assigned to individual nuclei based on an equidistant ring around the nuclei. The ratio in 

the total area of cell related droplets above and below 1070 μm2 was quantified as shift 

between a more white and brown phenotype in the whole cell population. Cell classification; 

Adipocyte: total droplet area above 750 μm2 and/or >10 spots <50 μm2. White subtype: 

Minimum one droplet above 830 μm2, brown subtype: No larger droplets, minimum 10 

spots.

Browning assay with tofacitinib, R406, JAK inhibitors and BMP7

Following screening and hit validation, browning assays were performed with commercially 

available JAK3 inhibitor (tofacitinib, Selleckchem S5001) and SYK inhibitor (R406, 

Selleckchem S1533). PSC-WA and ADSCs were differentiated and treated following the 

assay design of the browning screen. Tofacitinib was added at 2 μM and R406 at 1 μM final 

concentration unless otherwise indicated on figures and legends. THRB agonist (CAS 

219691-94-8) was added at 5 μM final concentration. Ruxolitinib (Selleckchem S1378), 

Baricitinib (Selleckchem S2851), CYT387 (Selleckchem S2219) and AZD1480 

(Selleckchem S2162) were added at 0.1-5 μM final concentration as indicated on figures.
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Recombinant human BMP7 (R&D systems, 354-BP) was added at 10 ng/ml final 

concentration in adipogenic medium supplemented with 250 μM IBMX (3-Isobutyl-1-

methylxanthine, Sigma-Aldrich I7018) at day 0, 3 and 5. In ADSCs, BMP7 was added at 10 

ng/ml at day 7, 10 and 12. Tofacitinib and R406 were added following the same conditions 

as BMP7 for proper comparison.

Browning of mouse adipose tissue explants

Subcutaneous and visceral adipose depots were dissected from 8 week old male C57/Bl6 

mice (n=5) and minced in standard media (DMEM containing 10 % FBS and 1% penicillin/

streptomycin). Minced pieces were pooled, placed into a 100 μM nylon strainer and rinsed 3 

times with standard media to remove red blood cells and excess lipid. Explants were 

carefully removed from the top of the strainer and plated into 24-well plates. Following 48 

hours of acclimatization in adipogenic medium (DMEM, 10% FBS, 1% penicillin/

streptomycin, 17 nM insulin, 1 μM dexamethasone) cells were treated with adipogenic 

medium containing DMSO, tofacitinib or R406 at 1, 2 and 5 μM final concentrations. Each 

treatment was performed in triplicate. Media with fresh compound was replaced every other 

day. Following 7 days of treatments, RNA was extracted in Trizol (Life Technologies) 

following standard protocol. RT-PCR was performed using Superscript III (Life 

Technologies) followed by analysis on a ViiA7 Real-Time PCR System (Life 

Technologies). Expression was analyzed relative to 18s RNA levels. Taqman probes were 

purchased from Life Technologies (UCP1: catalog number Mm01244861_m1, 18S: catalog 

number Mm03928990_g1).

Treatment with TNFα, INFγ and cyclopamine

TNFα (human recombinant Tumor necrosis factor alpha, Sigma-Aldrich T0157) was added 

directly to cell medium 48 hours or 24 hours before end of assay, at a final concentration of 

0.25 ng/ml or 1 ng/ml respectively. IFNγ (human recombinant Interferon-gamma, Sigma-

Aldrich I3265) and cyclopamine (Tocris ,1623) were added to fresh cell medium containing 

DMSO, tofacitinib or R406, at day 7, 10 and 12. For all treatments, corresponding volume 

of solvent (PBS, DMSO or ethanol, according to supplier's recommendation) was added to 

control wells and used for normalization.

Gene expression analysis by branched DNA (bDNA)

Adipocytes grown in 96 well plates were collected by replacing adipocyte medium with 100 

μl/well of 1× RNA lysis mixture (Panomics QuantiGene2.0 Assay kit). Lysates were 

transferred to mRNA capture plates containing a specific capture probe (Supplementary 

Table 2), incubated overnight, processed for branched DNA amplification and analyzed 

according to the manufacturer's instructions (Panomics QuantiGene2.0 Assay). ACTB and 

PPIB probes were used as housekeeping genes for normalization. Data are presented as 

average and standard deviation of 2 or 3 biological replicates and normalized on DMSO 

control.
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Western blot analysis

For protein analysis, browning assays were performed in 6 well plates initially seeded with 

5×105 PPARG2-MPCs. At differentiation day 7, PSC-WA were treated with DMSO, 

tofacitinib (2 μΜ) or R406 (1 μM) for 20 minutes and lysed in 75 ul/well of cold RIPA 

buffer (60 mM Tris–HCl at pH 7.4, 150 mM NaCl, 0.25% SDS, 1% NP40) containing 

Complete protease inhibitor (Roche) and phosphoSTOP (Roche). For browning assays over 

7 days, cells were lysed in cold RIPA buffer at day 14. Western blot analysis was carried out 

using the following antibodies: STAT1 (Cell Signaling 9172, 1:1000), phospho-STAT1-

S727 (Cell Signaling 9177, 1:1000), phospho-STAT1-Y701 (Cell Signaling 9167, 1:1000), 

STAT3 (Cell Signaling 4904, 1:1000), phospho-STAT3-S727 (Cell Signaling 9134, 

1:1000), phospho-STAT3-Y705 (Cell Signaling 9131, 1:1000), STAT5 (Cell Signaling 

9363, 1:1000), phospho-STAT5-Y694 (Cell Signaling 9351, 1:1000), Akt (Cell Signaling 

4691, 1:1000), phospho-Akt-Ser473 (Cell Signaling 4060, 1:1000), Erk1/2 (Cell Signaling 

9102, 1:1000), phospho-Erk1/2-Thr202/Tyr204 (Cell Signaling 4370, 1:2000), p38 MAPK 

(Cell Signaling 8690, 1:1000), phospho-p38-Thr180/Tyr182 (Cell Signaling 4511, 1:1000), 

JNK (R&D AF1387, 1:1000), phospho-JNK-T183/Y185 (R&D AF1205, 1:400), UCP1 

(R&D MAB6158, 1:2000), PRDM16 (R&D AF6295, 1:200), GAPDH (SIGMA, G8795, 

1:2000), COX-I (abcam 14705, 1:1000) and SDH-A (abcam 14715, 1:1000). The 

CHEMIDOC MP Imaging System and ImageLab Analysis Tool (BIO-RAD) or the Licor 

odyssey system was used to scan & quantitate the band intensity.

Reverse phase protein array (RPPA) analysis

For RPPA analysis, browning assays were performed in 10 cm dishes initially seeded with 

1×106 PPARG2-MPCs. At differentiation day 7, adipocytes were treated with DMSO, 

tofacitinib (2 μM) or R406 (1 μM) for 20 minutes and lysed in 100ul of CLB1 lysis buffer. 

Lysates were snap-frozen in liquid nitrogen, stored at −80°C and shipped to NMI 

Technology Transfer GmbH (Reutlingen, Germany) for RPP analysis as follow: Lysates 

were printed at 4 dilutions in duplicates onto ZEPTOMARK chips (Bayer Technology 

Services GmbH, Leverkusen, Germany) and analyzed for 51 selected phospho-analytes. 

Array images were analyzed using the ZeptoVIEW 3.1 software.

Measurement of cellular Oxygen Consumption Rate (OCR)

PPARG2-MPCs and ADSCs were plated at 7×104 cells/well in gelatin-coated XF 24-well 

cell culture microplates (Seahorse Bioscience), differentiated into adipocytes at confluence 

and treated with DMSO, tofacitinib and R406 as described above (browning assay). Day 14 

adipocytes were incubated in pre-warmed unbuffered DMEM medium (DMEM containing 2 

mM GlutaMAX, 1 mM sodium pyruvate, 1.85 g l−1 NaCl and 25 mM glucose) for 1 h. The 

oxygen consumption rate was measured by the XF24 extracellular flux analyser (Seahorse 

Biosciences). Mitochondrial biogenesis was profiled by injecting perturbation drugs, 2 μM 

oligomycin, 0.5 μM CCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) and 5 

μM antimycin A, in succession. OCR were determined by plotting the oxygen tension and 

acidification of the medium in the chamber as a function of time and normalized by protein 

concentration (picomoles per minute per milligram), respectively.
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Lipolysis assay

To measure lipolysis activity, DMSO, tofacitinib and R406-treated ADSC adipocytes were 

starved in DMEM containing 1% FBS for 1 h. Cells were then incubated in HBSS (Hank's 

balanced salt solution) with 2% fatty-acid-free BSA alone or with 10 μM forskolin. The 

culture medium was collected for glycerol measurement using the free glycerol reagent 

(Sigma#F6428). Protein concentrations used to normalize glycerol content were measured 

using the Bradford protein assay (BioRad). Glycerol release was expressed in micrograms of 

glycerol per milligram of total protein or the lowest value is set to 1.

RNA sequencing of adipocyte browning

A total of six, 6-well plates were prepared as follow: In each plate, three wells were seeded 

with PPARG2-MPC, one well with PPARG2/CEBPB/PRDM16-MPC and one well with 

rtTA-MPC (5×105 cells/well). All cells were induced and differentiated as described above. 

At day 7, PSC-WA received either DMSO, tofacitinib (2 μM) or R406 (1 μM). PSC-BA and 

MPC received DMSO only. At day 8, three cell plates were collected by adding 350 ul/well 

of RLT lysis buffer (Qiagen), constituting the 24h-triplicates. In the remaining three plates, 

treatment with DMSO, tofacitinib and R406 was repeated at day 10 and 12. At day 14, cells 

were collected by adding 350 ul/well of RLT lysis buffer (Qiagen), constituting the 7days-

triplicates. Total RNA from adipocyte lysate was extracted and purified using the RNeasy 

mini kit (Qiagen) according to the manufacturer's instructions. Genomic DNA was removed 

from the extracted RNA using the RNase Free DNase Set (Qiagen) and purified with 

RNeasy Minelute Clean up Columns (Qiagen). For all samples high quality RNA was 

obtained (RIN between 8.1 and 9.8). RNA Sequencing libraries were prepared from 1μg of 

total RNA using the Illumina TruSeq RNA Sample preparation Kit v2 (Illumina) following 

the manufacturer's instructions. Sequencing libraries were quantified using the Kapa Library 

Quantification kit (Kapa Biosystems) and quality controlled by capillary electrophoresis on 

a Bioanalyzer using High Sensitivity chips (Agilent Technologies). Libraries were 

sequenced in randomized pools of three or four libraries per lane on a HiSeq2000 sequencer 

(Illumina) for 2× 50 cycles using version 3 cluster generation kits and version 3 sequencing 

reagents (Illumina). One % of PhiX control library (Illumina) was spiked into each lane as a 

sequencing control.

Bioinformatics and statistical analysis of RNAseq data

RNA-seq reads were first aligned to human transcriptome, and unmapped reads were then 

aligned to human genome. Reads that map to annotated genes were modelled by negative 

binomial distribution, and differential expression was quantified by generalized linear 

models (GLMs) implemented in the edgeR package. For gene-level analysis, the filter for 

significantly differentially expressed genes was set as |logFC|>=1 (logFC=log fold-change) 

and FDR<0.05 (Likelihood-ratio test, adjusted with the Benjamini-Hochberg method for 

multiple testing). The filtering was not necessary for gene-set-level analysis. Gene set 

analysis was performed with both Gene Set Enrichment Analysis (GSEA) and the 

CAMERA method. Gene set enrichment score (ES) was defined as 

ES=sign(NESGSEA)log10(FDRGSEA), namely the sign of normalised enrichment score 

reported by GSEA (+1 if NESGSEA>0, and -1 otherwise), multiplied by log10-transformed 
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false-discovery rate (the q-value). The enrichment score ranges between -4 and 4, 

corresponding to negatively or positively enriched gene sets that are statistically highly 

significant (FDR q<=1E-4). Gene sets in use included both pathway information from public 

repositories, including Reactome, StringDB and NCI-Nature pathway database, and 

manually curated sets of genes whose expression are regulated by upstream pathways.

General statistical analyses

Biological replicates in figure legends refer to independent adipocyte differentiation and 

treatment, i.e. batch-infected PPARG2-MPCs were seeded in separate wells or dishes, 

differentiated for 7 days in the absence of compound and matured for another 7 days in the 

presence of compound. Biological replicates therefore capture the biological variation of 

stem cell differentiation into mature adipocytes and the cellular response to compound. 

Repeat experiments performed with different batches of PPARG2 lentiviral particles and 

MPC infections are shown in Supplementary Table 3. Technical replicates were replicate 

measurements of a given sample in readout assays (bDNA, RT-PCR, lipid droplet imaging, 

glycerol release). Statistical analyses were carried using a two-tailed unpaired Student's t-

test when n ≥ 3 biological replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Browning screen in human stem cell-derived adipocytes
a) Conceptual strategy to identify small molecules with adipocyte browning effect using 

human stem cells. PSC: pluripotent stem cells, EB: embryoid bodies, MPC: mesenchymal 

progenitor cells.

b) Adipocyte browning screen, assay workflow. PPARG2 expressing-MPC (PPARG2-MPC) 

were maintained in adipogenic medium containing doxycycline and rosiglitazone for 3 days 

in order to induce adipogenesis, and differentiated in the absence of rosiglitazone for 4 days. 

A library of 867 compounds of known mode of action was applied to PSC-WA at day 7, 10 

and 12. Total mRNA was collected at day 14, and UCP1 and FABP4 mRNA levels were 

quantified using the branched DNA technology. PPARG2-MPC: mesenchymal progenitor 

cells transduced with rtTA and doxycycline-inducible PPARG2 expression vectors. For 

more details see the methods section.

c) Scatter plot display of browning screen results. Each data point represents the average of 

two biological replicates per compound, normalized on DMSO control. X axis: UCP1 

mRNA level as an indicator of adipocyte browning, Y axis: FABP4 mRNA as an indicator 

of general adipogenesis. The color code distinguishes inactive compounds (black) from 

active ones: Rosiglitazone (red), Rosiglitazone-like compounds that increase UCP1 and 

FABP4 (blue), and potential browning compounds that induce UCP1 specifically (green). 

Dashed lines indicate neutral conditions, solid line delineates UCP1 induction above 2 fold.

d) Validation of browning hits by bDNA analysis showing that JAK3 inhibitors, SYK 

inhibitors and THRB agonists scored as best UCP1/FABP4 inducers. All compounds were 

added at a 5 μM final concentration. X axis: Compounds are identified by target and mode 
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of action. i= inhibitor, ag = agonist. For chemical nomenclature see the methods section. 

Values represent the mean of two biological replicates.
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Figure 2. Selected compounds modulate lipid morphology
a) PSC-WA were differentiated and treated as described in Fig1B. At day 14, cells were 

fixed, stained and imaged by confocal microscopy. Green: lipids, Red: nuclei. Scale bars, 

50μm. Images are representative of n =3 biological replicates.

b) Quantification of changes in lipid morphology is depicted as fraction of total lipid area (Y 

axis) per lipid droplet size (X axis). JAK3 inhibitor, SYK inhibitor and THRB agonist-

treated cells are shown in red and DMSO in gray. Values represent the mean of two 

biological replicates.

c) Bar graph illustrating the quantification of a brown-like lipid index, determined by 

calculating the ratio of total area for small (<1070μm2) versus large (>1070μm2) lipid 

droplets for the graphs in b), normalized to the DMSO control sample. Values represent the 

mean of two biological replicates.

d) Scatter plot showing the relation between UCP1/FABP4 mRNA (X axis) and brown-like 

lipid morphology (Y axis) upon treatment with 39 selected compounds. Brown-like lipid 
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index refers to the ratio of small/large lipid droplets normalized on DMSO as determined in 

b). Values represent the mean of two biological replicates.
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Figure 3. Validation of tofacitinib and R406 browning compounds in primary adipocytes
a) bDNA analysis of dose response with tofacitinib and R406. At high doses, R406 increases 

both UCP1 and FABP4 expression but UCP1/FABP4 remains above 2. Values represent the 

mean of two biological replicates.

b) Western blot analysis showing that up-regulation of UCP1 and PRDM16 protein levels 

correlates with up-regulation of UCP1 mRNA by tofacitinib and R406.

c) bDNA analysis showing that tofacitinib (tofa.) and R406 increase UCP1 expression in 

human primary adipocytes. ADSC: Adipose tissue-derived stromal cells. Values are mean ± 

s.d. of n = three biological replicates and differences from DMSO are significant for * P < 

0.05. P values were calculated using the two-tailed paired Student's t-test.

d) Bright field images showing that tofacitinib (tofa.) and R406 induce brown-like lipid 

morphology (arrows) in human primary adipocytes more prominently than BMP7. ADSC: 

Adipose tissue-derived stromal cells. Scale bars, 20μm. Data representative of 3 independent 

experiments. For uncropped images see Supplementary Figure 3.

e) RT-PCR analysis of UCP1 gene expression in mouse subcutaneous white adipose tissue 

(WAT) explants following 7 days of treatment with the indicated compound. Values are 

mean ± S.E.M. of n = three biological replicates of pooled tissue from 5 mice and 

differences from DMSO are significant for * P < 0.05 and ** P < 0.005. P values were 

calculated using the two-tailed paired Student's t-test.
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Figure 4. Inhibition of STAT phosphorylation downstream of tofacitinib and R406
a) Transcript abundance in RPKM (reads per kilobase transcript per million reads) of known 

targets of tofacitinib and R406 indicating that the JAK kinases are predominantly 

represented in PSC-WA. Values are mean ± s.d. of n = three biological replicates.

b) Western blot analyses of STATs, AKT and MAPKs in PSC-WA previously treated with 

DMSO, tofacitinib and R406 for 20 minutes or 7 days showing a pronounced inhibition of 

STAT phosphorylation by tofacitinib and R406 at both time points. R406 also significantly 

decreased phosphorylation levels of AKT and ERK1/2. The data shown is representative of 

two independent experiments.
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c) Western blot analysis of a dose-response with tofacitinib and R406 showing the 

correlation between UCP1 accumulation and inhibition of STAT3 phosphorylation. The data 

shown is representative of two independent experiments.

e) bDNA analysis of PSC-WA differentiated as in figure 1b) and treated with TNFα at day 

12, indicating that the negative effect of TNFα on UCP1 expression is rescued by tofacitinib 

and R406. Values represent the mean of two biological replicates.

f) Tofacitinib (tofa.) and R406 do not synergize during adipocyte browning. PSC-WA were 

treated with tofacitinib, R406 or a combination of both and analyzed for UCP1 expression 

by bDNA. Values are mean ± s.d. of n = three biological replicates and differences from 

DMSO are significant for * P < 0.05. P values were calculated using the two-tailed paired 

Student's t-test.

d) The JAK 1/2 inhibitor Ruxolitinib positively modulates UCP1 expression (graph) and 

inhibits STAT1/3 phosphorylation (right panels) in PSC-WA. Graph values of bDNA 

analysis represent the mean of two biological replicates. Images of western blot analysis are 

representative of two independent experiments.

g) bDNA analysis showing that the JAK1/2 inhibitors CYT387, AZD1480 and Baricitinib 

positively regulate UCP1 expression in PSC-WA. Values are mean ± s.d. of n = three 

biological replicates and differences from DMSO are significant for * P < 0.005. P values 

were calculated using the two-tailed paired Student's t-test.

h) Tofacitinib (tofa.) synergizes with THRB agonist (right panel) but not with Ruxolitinib 

(Ruxo., left panel) during adipocyte browning. Values are mean ± s.d. of n = three biological 

replicates and differences from DMSO are significant for * P < 0.005. P values were 

calculated using the two-tailed paired Student's t-test.
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Figure 5. JAK inhibition stably induces a brown-like profile in adipocytes
a) bDNA quantification of UCP1 mRNA levels over time, showing that the progressive 

accumulation of UCP1 induced by tofacitinib and R406 contrasts with the acute effect of 

THRB agonists. Values represent the mean of two biological replicates.

b) Schematic illustration of experimental design for b), c), and d): PSC-WA were treated 

with compounds for 7 days, washed 3 times with compound-free medium, and maintained in 

compound-free medium for an additional 14 day-period. Images were captured at day 28 

prior to addition of lysis buffer and bDNA analysis. Only JAK3i and SYKi-pre-treated cells 

displayed high levels of UCP1 mRNA relative to DMSO. Values represent the mean of two 

biological replicates.

c) Bright field images showing a reduced lipid vacuole size at day 28 for tofacitinib (tofa.) 

and R406-pre-treated adipocytes. Scale bars, 50μm. Images are representative of two 

independent experiments.

d) DMSO, tofacitinib (tofa.) and R406-pre-treated adipocytes were exposed to TNFα from 

day 26 to 28. bDNA analysis shows that pre-treatment with tofacitinib and R406 protects 

adipocytes from TNFα-mediated down-regulation of UCP1 expression. Values represent the 

mean of two biological replicates.
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Figure 6. JAK inhibition induces brown-like metabolic properties in adipocytes
a) Mitochondrial content was assessed by determining the ratio of COX-I on SDH-A protein 

levels by immunoblots as shown in upper panel for PSC-WA. Quantification of 

immunoblots revealed up-regulation of mitochondrial content in tofacitinib and R406-

treated PSC-WA and ADSC adipocytes. Values are mean ± s.e.m. of n = three biological 

replicates and differences from DMSO are significant for * P < 0.05 and ** P < 0.01. P 

values were calculated using the two-tailed paired Student's t-test.

b) Tofacitinib and R406-treated PSC-WA and ADSC adipocytes have higher oxygen 

consumption rate (OCR) compare to DMSO-treated adipocytes. Values are mean ± s.e.m. of 

n = four (DMSO and tofacitinib) and n = three (R406) biological replicates.

c) The degree of lipolytic activity was assessed by quantification of glycerol release. 

tofacitinib (tofa.) and R406-treated ADSC adipocytes showed increased lipolysis in the 

basal state (upper graph), but no in Forskolin (FSK)-stimulated cells (lower graph. Values 

are mean ± s.e.m. of n = three biological replicates and differences from DMSO are 

significant for * P < 0.05. P values were calculated using the two-tailed paired Student's t-

test.
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Figure 7. Gene signature and cellular identity of JAK-inactivated adipocytes
a-f) Adipocytes were differentiated according to scheme 1B, treated with tofacitinib and 

R406 at day 7, and collected at day 8 (24h time point) or day 14 (d7 time point). N= 3 

biological replicates. Each independent biological replicate was pooled from two individual 

wells.

a) Multi-dimensional scaling of RNA sequencing data revealing the white lineage identity of 

tofacitinib (tofa.) and R406 treated PSC-WA.

b) Levels of UCP1 transcripts served as experimental control for adipocyte browning. UCP1 

transcripts are higher in BA versus WA and higher in tofacitinib (tofa.) and R406-treated 

PSC-WA compare to DMSO-treated PSC-WA.

c) Interferon targets and pro-inflammatory pathways are significantly down-regulated by 

both compounds at 7d in PSC-WA. Enrichment scores of 9116 gene sets are compared 

between two time points (24h and 7d) for both compounds. Each circle represents one gene 

set that is coherently regulated by an upstream pathway. Black lines indicate the change of 
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average scores, and blue lines the change of individual pathways that are significantly 

reduced (|ΔES|>=2).

d) Differential expression profiles of interferon targets induced by tofacitinib and R406. A 

substantial subset of target genes are negatively regulated in both cases, making the density 

curves of logFC shifts toward left and thereby forming a “red shoulder”. Compared with 

24h, the expression of interferon pathway targets are repressed by both compounds at 7d (P 

=2.94E-6 and 2.06E-5, respectively; one-sided Kolmogorov-Smirnov test).

e) Differential expression profiles of selected interferon target genes in heatmap.

f) Whole transcriptome analysis revealed that the sonic hedgehog responsive genes GLI1, 

SFRP5, KLHL31 and SHH were up-regulated in tofacitinib (tofa.) and R406-treated 

adipocytes at day 7 compare to DMSO control. Values are mean ± s.d. of n = three 

biological replicates and differences from DMSO are significant for * P < 0.05 and ** P < 

0.01. P values were calculated using the two-tailed paired Student's t-test.
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Figure 8. IFN and SHH signaling contribute to adipocyte browning downstream of JAK 
inhibition
a) Whitening of IFNγ-treated adipocytes is visible as lipid accumulation forms a single, 

large vacuole. Treatment with tofacitinib (tofa.) and R406 restores the formation of small 

lipid droplets (arrows). Bright field images representative of two independent experiments. 

Scale bars, 20μm.

b) IFNγ treatment decreases the UCP1/FABP4 ratio (upper graph) and increases the 

expression of HSL, a marker of white adipocyte (lower graph) both in WA and BA. Values 

represent the mean of two biological replicates.

c) The SHH pathway antagonist cyclopamine fully blocks CP-6990550-mediated browning 

as judged by UCP1 level and partially blocks SYKi-mediated browning (left graph). 

Cyclopamine didn't restore R406-induced FABP4 levels, thereby decoupling the regulation 

of UCP1 and FABP4 by R406 (right graph). Values represent the mean of two biological 

replicates.

d) Model of adipocyte browning by pharmacological inhibition of JAK. Tofacitinib and 

R406 inhibit the JAK-STAT pathway in human adipocytes, leading to down-regulation of 

the interferon alpha, beta and gamma responses. Sustained shut down of IFN signaling 

relieves inhibition of the sonic hedgehog (SHH) pathway and thereby contributes to 

accumulation of UCP1. R406 acts as a pleiotropic drug with broad effects on adipocytes 

through activation of PPARG, BMPs and SREBF target genes. Red fonts: negative regulator 

of browning; Green fonts: positive regulator of browning; Arrows: activation; Flat lines: 

inhibition; Dash lines: hypothetical.

Moisan et al. Page 29

Nat Cell Biol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


