150 research outputs found

    Quantitative analysis of regional distribution of tau pathology with 11C-PBB3-PET in a clinical setting.

    Get PDF
    PURPOSE The recent developments of tau-positron emission tomography (tau-PET) enable in vivo assessment of neuropathological tau aggregates. Among the tau-specific tracers, the application of 11C-pyridinyl-butadienyl-benzothiazole 3 (11C-PBB3) in PET shows high sensitivity to Alzheimer disease (AD)-related tau deposition. The current study investigates the regional tau load in patients within the AD continuum, biomarker-negative individuals (BN) and patients with suspected non-AD pathophysiology (SNAP) using 11C-PBB3-PET. MATERIALS AND METHODS A total of 23 memory clinic outpatients with recent decline of episodic memory were examined using 11C-PBB3-PET. Pittsburg compound B (11C-PIB) PET was available for 17, 18F-flurodeoxyglucose (18F-FDG) PET for 16, and cerebrospinal fluid (CSF) protein levels for 11 patients. CSF biomarkers were considered abnormal based on Aβ42 ( 450 ng/L). The PET biomarkers were classified as positive or negative using statistical parametric mapping (SPM) analysis and visual assessment. Using the amyloid/tau/neurodegeneration (A/T/N) scheme, patients were grouped as within the AD continuum, SNAP, and BN based on amyloid and neurodegeneration status. The 11C-PBB3 load detected by PET was compared among the groups using both atlas-based and voxel-wise analyses. RESULTS Seven patients were identified as within the AD continuum, 10 SNAP and 6 BN. In voxel-wise analysis, significantly higher 11C-PBB3 binding was observed in the AD continuum group compared to the BN patients in the cingulate gyrus, tempo-parieto-occipital junction and frontal lobe. Compared to the SNAP group, patients within the AD continuum had a considerably increased 11C-PBB3 uptake in the posterior cingulate cortex. There was no significant difference between SNAP and BN groups. The atlas-based analysis supported the outcome of the voxel-wise quantification analysis. CONCLUSION Our results suggest that 11C-PBB3-PET can effectively analyze regional tau load and has the potential to differentiate patients in the AD continuum group from the BN and SNAP group

    Gene amplification as double minutes or homogeneously staining regions in solid tumors:Origin and structure

    Get PDF
    Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear

    DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    Get PDF
    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases

    High frequency of subclonal ALK mutations in high risk neuroblastoma patients. A SIOPEN study

    Get PDF
    Introduction: In neuroblastoma (NB), activating ALK receptor tyrosine kinase point mutations are detected in 8–10% at diagnosis using conventional sequencing. To determine the potential occurrence and the prognostic impact of ALK mutations in a series of high risk NB patients we studied ALK variation frequencies using targeted deep sequencing in samples of patients enrolled in the SIOPEN HR-NBL01 stud

    Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection

    Get PDF
    We explored the possibility to target Ewing's sarcoma family of tumors (ESFT) by redirecting T cells. To this aim, we considered NKG2D-ligands (NKG2D-Ls) as possible target antigens. Detailed analysis of the expression of MICA, MICB, ULBP-1, -2, and -3 in fourteen ESFT cell lines revealed consistent expression of at least one NKG2D-L. Thus, for redirecting T cells, we fused a CD3ζ/CD28-derived signaling domain to the ectodomain of NKG2D, however, opposite transmembrane orientation of this signaling domain and NKG2D required inverse orientation fusion of either of them. We hypothesized that the particularly located C-terminus of the NKG2D ectodomain should allow reengineering of the membrane anchoring from a native N-terminal to an artificial C-terminal linkage. Indeed, the resulting chimeric NKG2D receptor (chNKG2D) was functional and efficiently mediated ESFT cell death triggered by activated T cells. Notably, ESFT cells with even low NKG2D-L expression were killed by CD8pos and also CD4pos cells. Both, mRNA transfection and lentiviral transduction resulted in high level surface expression of chNKG2D. However, upon target-cell recognition receptor surface levels were maintained by tranfected RNA only during the first couple of hours after transfection. Later, target-cell contact resulted in strong and irreversible receptor down-modulation, whereas lentivirally mediated expression of chNKG2D remained constant under these conditions. Together, our study defines NKG2D-Ls as targets for a CAR-mediated T cell based immunotherapy of ESFT. A comparison of two different methods of gene transfer reveals strong differences in the susceptibility to ligand-induced receptor down-modulation with possible implications for the applicability of RNA transfection

    Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1)

    Get PDF
    Purpose: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Materials and methods: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Results: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. Conclusion: Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.Key Objective: High risk neuroblastoma (HR-NB) is one of the most difficult childhood cancers to cure. This study examined whether the presence of an ALK alteration (amplification or mutation) was associated with a poor prognosis in a large patient series treated on the prospective European high-risk neuroblastoma trial (HR-NBL1). Knowledge Generated: We found that ALK amplification or clonal mutation was associated with inferior prognosis in patients with HR-NB and both are independent prognostic variables on multivariate analysis. To our knowledge, this is the first study to report the highly prognostic significance of ALK amplification in HR-NB. Relevance: As ALK can be targeted therapeutically, this study convincingly argues for the introduction of ALK inhibitors for upfront management of patients with HR-NB with ALK aberrations. Importantly, the prognostic significance of ALK alterations included a subgroup of trial patients treated with the current standard of care for HR-NB including anti-GD2 immunotherapy.info:eu-repo/semantics/publishedVersio

    miR-135A Regulates Preimplantation Embryo Development through Down-Regulation of E3 Ubiquitin Ligase Seven in Absentia Homolog 1A (SIAH1A) Expression

    Get PDF
    Background: MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. Methodology/Principal Findings: Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid). Conclusions/Significance: The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a. © 2011 Pang et al.published_or_final_versio
    • …
    corecore