Abstract ANR 2018: ALK SIOPEN

Genetic alterations of ALK in high-risk neuroblastoma patients. A SIOPEN study.

Angela Bellini¹, Virginie Bernard¹, Inge Ambros², Peter F. Ambros², Katleen de Preter³, Valérie Combaret⁴, Klaus Beiske⁵, Marta Jeison⁶, Barbara Marques⁷, Martina Morini⁸, Katia Mazzocco⁸, Raffaella Defferrari⁸, David Betts⁹, Tommy Martinsson¹⁰, Annick Mühlethaler-Mottet¹¹, Rosa Noguera¹², Jaime Font de Mora¹², Ales Vicha¹³, Ruth Ladenstein¹⁴, Dominique Valteau-Couanet¹⁵, Caroline Maria Rossing¹⁶, Nick Bown¹⁷, Deborah Tweddle¹⁸, Smadar Avigad¹⁹, Eve Lapouble¹, Mathieu Chicard¹, Nada Leprovost¹, Nathalie Clement¹, Sylvain Baulande¹, Gaelle Pierron¹, Jimenez Irene¹, Bhalshankar Jaydutt¹, Olivier Delattre¹, Jean Michon¹, Gudrun Schleiermacher¹

¹Institut Curie, Paris, France

²Children's Cancer Research Institute, Vienna, Austria

³Ghent University, Ghent, Belgium

⁴Centre Léon Berard, Lyon, France

⁵Oslo University Hospital, Oslo, Norway

⁶Schneider Children's Medical Center of Israel, Tel Aviv University, Israel

⁷ Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal

⁸lstituto G. Gaslini, Genoa, Italy

⁹ Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland

¹⁰Clinical Genetics, Sahlgrenska Academy at the University of Gothenburg

¹¹University Hospital CHUV, Lausanne, Switzerland

¹²Hospital Universitario y Politécnico La Fe, Valencia, Spain

¹³Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic

¹⁴St Anna Children's Hospital, Vienna, Austria

¹⁵Gustave Roussy, Villejuif, France

¹⁶Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

¹⁷Northern Genetics Service, Newcastle upon Tyne, Newcastle, UK

¹⁸Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK ¹⁹Schneider Children's Medical Center of Israel, Pediatric Hematology Oncology, Petah Tikva, Israel.

Background: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated either through genomic amplification or activating point mutations. We studied *ALK* genetic alterations in high-risk NB patients to determine their frequency and prognostic impact.

Methods: Diagnostic NB samples from 1039 patients enrolled in the SIOPEN-HR-NBL1 trial were studied to determine the *ALK* amplification status (copy number analysis; n=337), the *ALK* mutational profile (Sanger and/or NGS including deep sequencing covering hotspots in exons 23-25, n=203) or both (n=499).

Results: High level genomic *ALK* amplifications were detected in 4.4% of cases (37/836); all but 2 showed *MYCN* amplification. As for *MYCN* amplification, *ALK*

amplification was more frequently observed in children aged<18 months at diagnosis (p=0.01). No correlation with the primary tumor site was observed.

ALK mutations were detected at a clonal level (>10% mutated allele fraction, MAF) in 9.8% of cases (69/702) (F1174 n= 25, R1275 n=32, both F1174 and R1275 n=1, F1245 n=6, others n=5). Additionally, 3.7% of patients (22/586 by NGS) harbored ALK mutations at a subclonal level (MAF 0.5-10%) (F1174 n=11, R1275 n=6, both F1174 and R1275 or F1174 and F1245 n=3, other n=2). Although not statistically significant, *ALK* mutations were observed slightly more frequently in non-adrenal compared to adrenal primary tumors (p=0.08).

Whereas no statistically significant difference in survival was observed between patients with and without *ALK* mutations, patients with *ALK* amplification had a significantly poorer event free (EFS) and overall survival compared to those without *ALK* amplification (logrank, p<0.0001).

A multivariate analysis was performed to determine which parameters independently predicted EFS in this high risk population. Among 450 patients with complete datasets, a Cox proportional hazards procedure retained stage 4 disease (as opposed to non-stage 4) and *ALK* amplification as factors with a higher hazard of relapse/progression (hazard 2.3 and 2.2, respectively), whereas *ALK* mutation, *MYCN* amplification and age>18 months were not retained.

Conclusion: Taking into account amplifications, clonal and subclonal mutations, genetic alterations of *ALK* were observed in tumor samples of 17% of high-risk NB patients, of importance when considering ALK targeted therapies. Among the different genetic alterations, only *ALK* amplification predicted poorer survival.