12 research outputs found

    Molecular characterization of CPS1 deletions by array CGH

    Full text link
    CPSI deficiency usually results in severe hyperammonemia presenting in the first days of life warranting prompt diagnosis. Most CPS1 defects are non-recurrent, private mutations, including point mutation, small insertions and deletions. In this study, we report the detection of large deletions varying from 1.4 kb to >130 kb in the CPS1 gene of 4 unrelated patients by targeted array CGH. These results underscore the importance of analysis of large deletions when only one mutation or no mutations are identified in cases where CPSI deficiency is strongly indicated

    Identification of novel candidate disease genes from de novo exonic copy number variants

    Get PDF
    Background: Exon-targeted microarrays can detect small ( Methods: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. Results: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 singlegene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. Conclusions: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.Peer reviewe

    Exon deletions of the EP300 and CREBBP genes in two children with Rubinstein–Taybi syndrome detected by aCGH

    No full text
    We demonstrate the utility of an exon coverage microarray platform in detecting intragenic deletions: one in exons 24–27 of the EP300 gene and another in exons 27 and 28 of the CREBBP gene in two patients with Rubinstein–Taybi syndrome (RSTS). RSTS is a heterogeneous disorder in which ∼45–55% of cases result from deletion or mutations in the CREBBP gene and an unknown portion of cases result from gene changes in EP300. The first case is a 3-year-old female with an exonic deletion of the EP300 gene who has classic facial features of RSTS without the thumb and great toe anomalies, consistent with the milder skeletal phenotype that has been described in other RSTS cases with EP300 mutations. In addition, the mother of this patient also had preeclampsia during pregnancy, which has been infrequently reported. The second case is a newborn male who has the classical features of RSTS. Our results illustrate that exon-targeted array comparative genomic hybridization (aCGH) is a powerful tool for detecting clinically significant intragenic rearrangements that would be otherwise missed by aCGH platforms lacking sufficient exonic coverage or sequencing of the gene of interest

    Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching

    No full text
    Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from ∼250 kb to ∼2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2

    La gestión emocional de los docentes de educación física

    No full text
    Treball Final de Grau en Mestre o Mestra de Educació Primària. Codi: MP1040. Curs acadèmic: 2016/2017El tema elegido para este TFG trata sobre la inteligencia emocional con el objetivo de analizar la gestión emocional del docente y cómo influye en la actitud de las niñas y los niños. Concretamente, ser capaces de afrontar ciertas situaciones y gestionar sus emociones de manera que las pueda afrontar de una forma ecológica para las partes implicadas, de forma que la clase pueda continuar con la dinámica adecuada, la cual comentaremos durante el trabajo. La razón por la cual se ha elegido este tema es porque hemos visto y vivenciado durante la estancia en prácticas en el CEIP Pio XII que, durante la clase de educación física, aparecen situaciones que pueden afectarnos emocionalmente a los docentes como personas que somos y puede repercutirnos en nuestra labor docente, concretamente, en el área de la educación física. Por ello, también proponemos una serie de herramientas y recomendaciones para ayudar a los docentes de educación física, para que como dice Elia López (2011, p.32) se fomente en las clases un clima afectivo, distendido y desinhibido. Para analizar la propuesta, se partirá de una puesta en práctica, que explicaremos, acerca del tema y en el análisis de nuestra conducta a la hora de impartir las clases para ver y analizar la actitud de los/as niños/as, durante las clases de expresión corporal en 6º curso, ya que, en la expresión corporal, como comentaremos es importante la parte emocional tanto del profesor como de los alumnos
    corecore