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Abstract

Background: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs),
including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular
diagnosis for conditions with known disease-associated genes, enables better genotype—phenotype correlations,
and facilitates variant allele detection allowing novel disease gene discovery.

Methods: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray
analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from
2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the
genes involved were evaluated for a potential disease association.
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Results: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we
identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males,
and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were
potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either
recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-
gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-
linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five
genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in
size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or
research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO,
PSMD12, TANGOZ2, and TRIP12), novel candidate disease genes (ARGLUT and STK3), and further confirmation of
disease association for two recently proposed disease genes (ME/S2 and PTCHD1). Notably, exon-targeted CMA
detected several pathogenic single-exon CNVs missed by clinical WES analyses.

Conclusions: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic
CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease

genes by genome-wide assay.

Keywords: Exon targeted array CGH, Intragenic copy number variants, CNVs, de novo variants

Background

Clinical application of genome-wide assay by chromo-
somal microarray analysis (CMA) has significantly im-
proved the detection rate for molecular diagnoses in
clinical genomics diagnostics [1], enabling the elucida-
tion of pathogenic copy number variants (CNVs) in indi-
viduals with various conditions, including congenital
anomalies, intellectual disability/developmental delay
(ID/DD), autism spectrum disorder (ASD), epilepsy,
heart defects, and neuropsychiatric diseases [2-11].
CNVs smaller than 400 kb in size are challenging for
clinical interpretation and, when not involving known
genes [2, 12, 13], they are often not reported in routine
clinical CMA. Nevertheless, such CNVs have been docu-
mented to contribute to cognitive phenotypes in popula-
tion studies [14, 15].

Whereas the positive correlation between the size of a
CNV and likelihood of pathogenicity guided the size cut-
offs used for the clinical reporting of CNVs [5, 13], gene
content is also an important factor in the determination of
potential CNV pathogenicity. Disease-causing CNVs may
be as small as a single exon [16—24], which still remain be-
yond the detection limits of whole-exome sequencing
(WES) [25]. To improve the detection rate for such patho-
genic CNVs, several groups developed exon-focused ar-
rays with a sufficient number of interrogating oligo probes
to target single exons of both known disease-associated
genes and developmentally important genes that are not
yet associated with human disease [12, 13, 26-33].

In 2010, we reported the CMA results in 3743 patients
using our first version of a clinical exon-targeted array
(OLIGO V8) [29]. We demonstrated that increasing
array resolution to single exons not only allowed

detection of small CNVs in the known disease genes, but
also provided new opportunities for novel gene discover-
ies and the ability to detect somatic mosaicism for intra-
genic CNVs [29, 34].

Despite the advances in molecular diagnostics using
genome-wide assays [1], WES and targeted next-
generation sequencing (NGS) studies have limited ability
to detect small intragenic CNVs [25] and therefore can-
not currently reveal the totality of disease genes and
pathogenic alleles. To further investigate this hypothesis
and to assess the efficacy of exon-targeted CMA to iden-
tify putative novel disease genes, we queried our data-
base of exon-targeted clinical CMA performed in 63,127
patients at Baylor Genetics (BG) Laboratories, with a
particular focus on small de novo autosomal and X-
linked (in males) CNVs involving genes that are cur-
rently not associated with human disease. These variants
have increased likelihood to be pathogenic and may lead
to the identification of the novel candidate disease genes
[3, 23, 27, 35, 36]. We also cross-referenced these “gene
level” data with single nucleotide variants (SNV) in the
same gene detected in the clinical WES laboratory at BG
and research exomes from the Baylor Hopkins Center
for Mendelian Genomics (BHCMG).

Previous works demonstrating increased performance
of exon-targeted CGH arrays focused mostly on the im-
provements in detection of CNVs involving known dis-
ease genes. Our results show that the systematic study
of the large clinical cohort using exon-targeted CMA
can be successfully used to discover novel disease genes,
especially utilizing CNVs involving the candidate or po-
tential new disease genes and with further integration of
SNV data from WES.
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Methods

Microarrays

In 2008, we designed and clinically implemented array
comparative genomic hybridization (aCGH) with exonic
coverage of over 1700 disease and candidate disease
genes (OLIGO V8) and demonstrated its efficacy for de-
tection of pathogenic exonic losses or gains as small as a
few hundred base pairs in size [29]. This work suggested
that as many as 10% (3/30 in known disease genes) of
small intragenic CNVs might represent mosaic mutant
alleles. Subsequently, we expanded our custom-designed
oligo array to include > 4800 genes, including autosomal
recessive disease genes (OLIGO V9 [37], V10, and V11).

We retrospectively analyzed CMA data from 63,127
patients (most diagnosed with neurodevelopmental de-
fects) referred for CMA between April 15, 2007 and
February 17, 2017 using six different versions of custom-
ized oligonucleotide arrays (OLIGO V6-V11; Agilent
Technologies Inc., Santa Clara, CA, USA) developed at
BG Laboratories. Among 63,127 patients, 46,755 were
analyzed using microarrays targeting 1700 genes
(OLIGO V8) or the subsequent microarray versions tar-
geting > 4800 genes (OLIGO V9, V10, and V11) [12, 29].
In these microarrays, more than 90% of the exons in tar-
geted genes were covered with at least three interrogat-
ing oligonucleotides, with an average of > 4.2 probes per
exon, whereas intronic probes were uniformly distrib-
uted every 10 kb. In addition, for the purposes of
normalization and statistical analyses of raw data, the
design included unique sequence interrogating oligo-
nucleotide probes for the entire genome covered at an
average resolution of 30 kb (excluding segmental dupli-
cations). The procedures for DNA digestion, labeling,
and hybridization for the oligo arrays were performed
according to the manufacturers’ instructions, with minor
modifications [38-40].

We used an in-house developed software to detect
CNVs from aCGH data. The algorithm requires at least
three consecutive probes with a log2 ratio < — 0.6 to de-
tect deletion or at least three consecutive probes with a
log2 ratio>0.4 to detect duplication. CNVs<500 kb
with no RefSeq genes within the intervals or CNVs
within segmental duplication (SDs) and CNVs in benign
polymorphic regions, such as those listed in Database of
Genomic Variants (DGV) are generally not reported.
CNVs located in the regions known to be disease-
associated and likely exhibiting incomplete penetrance,
variable expressivity, or representing a potential reces-
sive carrier state can be reported despite their overlap
with DGV CNVs. The remaining CNVs are then classi-
fied as: (1) pathogenic = pathogenic CNVs includes aneu-
ploidy, known microdeletion/microduplication, deletion,
and intragenic duplication genomic intervals involving
known dosage-sensitive autosomal-dominant (AD)
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disease genes, or deletion of any size involving a dosage
sensitive gene associated with AD, haploinsufficiency, or
other likely pathogenic consequence. Moreover large du-
plications (>2 Mb) with genes or duplications >1 Mb
with genes known to be dosage-sensitive are also classi-
fied as pathogenic CNVs; (2) likely benign=<1 Mb
CNVs with no genes in the intervals or CNVs in the
DGV database and have been reported to be inherited
multiple times in our CMA database; (3) loss/gain in non-
disease region =rare CNVs <1 Mb with genes not impli-
cated in disease phenotypes; (4) loss/gain of uncertain
clinical significance = CNVs that have genes, but there is
no supporting evidence of pathogenicity. CNVs of uncer-
tain significance are usually investigated by parental stud-
ies. CNVs that have been shown to exhibit incomplete or
uncertain penetrance were classified as such.

Whole-exome sequencing data
WES was performed in ~ 9000 individuals sequenced at
BG and in the cohort of ~6000 samples sequenced in
the Human Genome Sequencing Center (HGSC) at
BCM through the BHCMG research initiative [41] as de-
scribed previously [23, 42—44].

Computational parsing of clinical CMA database

The main aim of our retrospective analyses was to identify
potential pathogenic or likely pathogenic CNVs affecting
genes that thus far were not disease-associated. Subse-
quently, we queried the BG CMA database for other over-
lapping submicroscopic CNV deletions up to 5 Mb in size
(de novo, inherited, or of unknown parental origin) that
encompassed at least one gene that we consider as novel
or recently published candidate disease gene.

Genes affected by single-gene CNVs and those in-
cluded in de novo or hemizygous CNVs affecting 2-5
genes were classified according to their disease status
using the lists of known AD, autosomal-recessive (AR),
or X-linked (XL) disease genes, as defined in the Online
Mendelian Inheritance in Man (OMIM) database
(http://omim.org/) [29, 45, 46]. For each gene, we per-
formed an extensive literature search for genotype—
phenotype correlations. Moreover, all genes were cross-
referenced with the Simons Foundation Autism Re-
search Initiative (SFARI) database (https://sfari.org/) of
ASD-related genes [47].

In addition, we searched the BG and BHCMG exome
databases for predicted loss-of-function (LOF) (i.e. stop-
gain, frameshift, or splicing) variants in the candidate
genes to potentially provide further evidence of their
disease-association. From the initial set, we excluded
variants with a total coverage of <20 reads or the ratio
of variant to total reads below 0.2. We also removed var-
iants with minor allele frequency (MAF) > 0.001 in ESP
[48], 1000 Genomes [49], or our local exome databases
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or with MAF >0.0001 in ExAC (Exome Aggregation
Consortium, http://exac.broadinstitute.org) [50].

To assess the predicted probability of exhibiting hap-
loinsufficiency for a given gene, we used haploinsuffi-
ciency scores calculated by Huang et al. [51]. These
predictions were generated using classification models
trained on known haploinsufficient genes and genes dis-
rupted by unambiguous LOF variants in at least two ap-
parently healthy individuals. Genes with high rank
scores (0—10%) indicate that the gene is likely to exhibit
haploinsufficiency. In our evaluation of a particular gene,
we also consider the pLI score, i.e. the probability that
the gene is intolerant to LOF variants. This score was
generated based on the analysis of the ratio of the num-
ber of observed vs. expected LOF variants in the ExAC
population [50, 52]. Genes with high pLI scores (pLI >
0.9) are extremely LOF-intolerant, whereby genes with
low pLI scores (pLI <0.1) are LOF-tolerant.

Fluorescent in situ hybridization (FISH)

FISH analyses were performed with bacterial artificial
chromosome (BAC) or fosmid clones using standard
procedures [53].

Breakpoint junction sequencing

We designed a customized high-density CGH array
(HD-aCGH, AMADID 081888) for analyzing CNVs de-
tected by CMA to further resolve breakpoint junctions
and determine the nucleotide sequence of selected
breakpoints. Long-range polymerase chain reaction
(PCR) followed by Sanger sequencing of the PCR prod-
ucts was performed, as described, to obtain base-pair
resolution of the breakpoint junctions [54]. Breakpoint
junction sequencing was performed for small deletions
in which the involved exons could not be determined
due to a limited resolution of our clinical array.

Parental studies

The inheritance status of CNVs was determined by ana-
lyzing parental DNA using CMA or FISH. Note that in
the case of de novo events, we did not formally confirm
paternity and maternity by molecular testing.

Results

Out of 24,373 non-polymorphic CNVs detected in
18,708 patients, genome-wide clinical aCGH studies
identified 7200 individuals with 8094 CNVs involving a
single gene, including 145 de novo autosomal (117 losses
and 28 intragenic gains) and 257 X-linked (in males) de-
letion CNVs, and 1049 inherited CNVs (878 losses and
171 intragenic gains) on autosomes (Fig. 1). Sizes of
CNVs overlapping a single gene were in the range of ~
100 bp to ~ 5.8 Mb with a median size of 94 kb. Import-
antly, 1857 (23%) of single gene CNVs affected only a
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single exon. We also found 6287 individuals with 6897
CNVs encompassing 2-5 genes (including disease-
associated and non-disease-associated genes), including
127 de novo autosomal, 63 X-linked (in males), and 414
inherited autosomal CNV deletions (Fig. 1).

Most common single-gene CNVs affect primarily known
disease genes

In our clinical cohort, the most common single-gene
CNVs include CHRNA7 (OMIM* 118511) (14 deletions/
312 duplications), IMMP2L (OMIM* 605977) (151 dele-
tions/1 duplication), TMLHE (OMIM* 300777) (125 de-
letions/21 duplications), RBFOXI1 (OMIM* 605104) (60
deletions/62 duplications), DMD (OMIM* 300377) (74
deletions/32 duplications), NRXN1 (OMIM* 600565) (90
deletions/9 duplications), CNTN6 (OMIM* 607220) (22
deletions/63 duplications), and PARK2 (OMIM* 602544)
(50 deletions/17 duplications). Of those, events in
CHRNA?7, DMD, and NRXNI [34] were interpreted as
directly causative for the patients’ phenotypes, whereas
CNVs involving TMLHE [32], PARK2 [55], and RBFOX1
[56, 57] may confer susceptibility to disease or represent
an allele for a recessive carrier state [58]. In total, we
identified 111 known disease genes that were potentially
disrupted by de novo autosomal or X-linked (in males)
single-gene CNVs.

Recently proposed and potential novel disease genes

We identified 91 genes that were either recently pro-
posed to be candidate disease-associated or non-disease-
associated genes. These were disrupted by 37 de novo
autosomal single-gene deletions, 100 X-linked CNVs (97
deletions and three intragenic duplications in males),
and ten de novo intragenic duplications on autosomes
(see Fig. 1 and Additional file 1).

To search for additional candidate disease genes, we
extended our analyses to 6897 CNV deletions harboring
2-5 non-disease genes. We identified 134 distinct re-
cently proposed or not yet disease-associated genes in-
volved in 41 de novo autosomal and 12 X-linked (in
males) deletions (see Fig. 1 and Additional file 2).

To further narrow the list of candidate disease-causing
genes, we considered the following factors: (1) the num-
ber of de novo CNVs determined for each gene (Add-
itional files 1 and 2); (2) additional CNVs <5 Mb in size
found in our cohort; (3) LOF variants found in ~ 15,000
WES cases (from BG and BHCMG “disease cohorts”);
(4) phenotypic overlap among patients; (5) literature re-
cords supporting disease association; (6) predictions of
haploinsufficiency [51] and intolerance to LOF [50] of
the identified variants. Using these criteria, we found
evidence supporting the contention of recently published
disease genes, including BPTF (OMIM* 601819) [59],
NONO (OMIM* 300084) [60], PSMDI12 (OMIM*


http://exac.broadinstitute.org/

Gambin et al. Genome Medicine (2017) 9:83 Page 5 of 15

[ 63,127 patients referred for CMA since 2007 (46,755 analyzed with single exon resolution) ]

.....................................................................................................................................................................................

Gene count

U e 1

[ 8,094 single gene CNVs in 7,200 patients ] [ 6,897 CNVs encompassing 2,3,4, or 5 genes in 6,287 patients ]

Inheritance

“““““““““““““““““““““““““““““““““““““““““““““““““ A N
145 autosomal 1,049 3,905 autosomal
257 autosomal CNVs of unknown 1,350

di CNV! . !

€ novo s deletion inherited CNVs inheritance 127 d |6? 414 autosomal

i CNVs on autosomal eletions a.utosc_:mal o

W CAEIES chrXin (878 deletions; (3,173 deletions; LOLT on chrX i of unknown

28 int i ! b g i i i

niragenic males 171 intragenic 732 intragenic G2 Ll L RS inheritance

duplications)

duplications) duplications

Genotype-phenotype association

Frem “ """""""""""""""""""""""""""""""""""""""""""""" ‘w'""""""""'""""""""""":

91 non-disease associated genes covered by 147 CNVs

100 CNVs on chrX in males)

(37 autosomal de novo deletions; 10 autosomal intragenic duplications;

134 non-disease associated gene covered by 53 CNVs

(41 autosomal de novo deletions;
12 deletions on chrX in males)
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604450) [61], TANGO2 (OMIM* 616830) [62, 63],
TRIP12 (OMIM* 604506) [64, 65], and likely MAGEDI
(OMIM* 300224) [66]. Furthermore, we found genes re-
cently reported as disease-associated, including TBRI
(OMIM* 604616) [67] and CLTCLI (OMIM* 601273)
[68], as well as genes not yet associated with diseases.
We selected two novel non-disease-associated genes,
STK3 (OMIM* 605030) mapping to 8q22.2 and ARGLU1
(OMIM* 614046) that maps in 13q33 for further mo-
lecular and clinical analyses, to determine whether these
could be novel disease genes. In addition, we attempted
to expand the genotype—phenotype correlations for two
recently proposed candidate disease genes, MEIS2
(OMIM* 601740) on 15ql4 [69-74], and PTCHDI
(OMIM* 3008280) on Xp22.11 [75-80]. In total, we
found 17 small CNV deletions (3.2 kb to 4.9 Mb in size
with three CNVs <50 kb) overlapping these four candi-
date disease genes, including eight de novo events
(Figs. 2, 3, 4 and 5). However, paternity was not tested
formally (ie. by molecular markers) and thus non-
paternity could not be ruled out for most of the cases.
The investigation of ~ 15,000 WES samples from BG
and BHCMG revealed rare LOF variants, providing add-
itional support for potential genotype-phenotype corre-
lations (Tables 1, 2, 3 and 4, patients with variants in
ARGLUI, STK3, MEIS2, and PTCHDI, respectively; see
also Additional file 3 for discussion on two other candi-
date disease genes, AGBL4 (OMIM* 616476) and

CSMDI1 (OMIM* 608397); Additional files 4, 5 and 6 for
information on patients with additional variants in
ARGLUI1/EFNB2, AGBL4, and CSMD1, respectively; and
Additional files 7 and 8 for visualization of CNVs in
AGBL4 and CSMD]I, respectively).

ARGLU1 and EFNB2 that map to 13933 as potential new
disease genes

In the BG CMA database, we found two CNVs involv-
ing ARGLUI and EFNB2 (OMIM* 600527), including
one ~ 1.1 Mb de novo deletion encompassing ARGLU1
and EFNB2 and one ~ 4.2 Mb deletion of unknown in-
heritance harboring ARGLUI, DAOA, FAMI55A, and
EFNB2 (Table 1). In addition, one de novo ~ 3.8 Mb
deletion encompassing ARGLUI and EFNB2 was
found in one DECIPHER (https://decipher.sanger.a-
c.uk/) patient, 280488. Moreover, in the BG WES data-
base, we identified one de novo frameshift variant
(g.13:107211843delA; NM_018011:c.509delA; p.K170fs)
in ARGLUI. Our further investigation of five novel or
very rare missense variants: one in ARGLUI (c.350G >
A p.R117Q) and four in EFNB2 (c.498A > C, p.Q166H;
c.503C > T, p.A168V; c.796A > G, p.T266A; c.803C>T,
p-S268L) revealed that these five variants were all
inherited (Additional file 4). Importantly, putative LOF
variants in ARGLUI and EFNB2 have been rarely seen
in the BG and BHCMG databases (one variant men-
tioned above for ARGLUI and zero for EFNB2),
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indicating their intolerance to haploinsufficiency. Predic-
tion algorithms indicate that both ARGLUI and EFNB2
are sensitive to LOF with haploinsufficiency scores of 5.27
and 1.35 and the probabilities of intolerance to LOF muta-
tions (pLI scores) of 0.99 and 0.94, respectively.

determined. In the DECIPHER database, one patient
(258095) had an intragenic deletion of exons 5 and 6 of
unknown parental origin. Although computationally de-
termined haploinsufficiency and pLI scores for STK3 (0.12
and 0, respectively) do not favor a haploinsufficiency
pathomechanism for this gene, the identification of de

STK3 may be associated with human disease phenotypes novo variants suggest a potential disease association.

We identified four different-sized CNV deletions involving
STK3 (Table 2). Two of these deletions (87 kb and 143 kb
in size) were confirmed to be de novo; inheritance of two
other CNVs (81 kb and 22 kb in size) could not be

Novel MEIS2 and PTCHD1 variants

We identified new variants in MEIS2 and PTCHDI,

which have been recently recognized as disease-
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Table 1 Clinical information on patients with ARGLUT and EFNB2 variants

Case number Pt1 Pt2 Pt3 Pt4 (DECIPHER 280488)
Sex Male Female Male Female
Variant chr13:106,624,717- chr13:104,114,620- chr13:107211843delA; chr13:106,884,343-110,711,191

107,768458 1.1 Mb
del

108,292,078 4.1 Mb del

NM_018011:c.509delA; p.K170fs
frameshift

3.8 Mb del

Confirmation method ~ FISH N/A PCR + Sanger FISH

Affected genes ARGLU1, EFNB2 DAOA, FAM155A, ARGLUT, ARGLU1 ABHD13, ARGLU1, EFNB2,
EFNB2 FAM155A, IRS2, LIG4, MYQOe,

TNFSF13B

Inheritance De novo Unknown De novo De novo

Parental studies FISH N/A PCR + Sanger FISH

Developmental delay/ + + + +

intellectual disability

Developmental + N/A N/A N/A

regression

Autistic spectrum + N/A N/A N/A

Abnormal movement  N/A N/A + N/A

Cerebellar hypoplasia ~ N/A N/A + N/A

Oculomotor apraxia N/A N/A + N/A

Seizures/epilepsy N/A + N/A N/A

Other N/A Horse shoe kidney/ectopic N/A N/A

kidney, dysmorphic features

N/A not available

Candidate genes are indicated in bold
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Table 2 Clinical information on patients with STK3 variants
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Case number Pt1 Pt2 Pt3 Pt4
Sex Female Male Female Male
Variant chr8: 99,591,666-99,678,567 chr8: 99,883,084-100,026,306° chr8: 99,638,463-99,719,599 chr8:99,524,409-99,546,574°

87 kb, exons 7-8 del

143 kb, exons 1-3 del

81 kb, exons 5-6 del 22 kb, exon 10 del

Confirmation method FISH FISH, PCR + Sanger High-density CGH array PCR + Sanger

Affected genes STK3 STK3, OSR2 STK3 STK3

Inheritance De novo De novo Unknown Unknown

Parental studies FISH FISH N/A N/A

Developmental delay/ N/A + N/A +

intellectual disability

Multiple congenital + N/A Skull, face, and neck N/A

anomalies anomalies

Other Dysmorphic features Radioulnar synostosis, N/A Failure to thrive, hypotonia
hypospadias

?CNV coordinates obtained using PCR and Sanger sequencing of breakpoint junction

N/A not available

associated genes. We found six different-sized deletions
involving MEIS2 (Table 3). Three of them, including one
small (~ 3.2 kb) and two large (~ 4.8 Mb and ~ 4.9 Mb)
deletions were confirmed to be de novo; one deletion ~
3.47 Mb was maternally inherited and the inheritance of
two other (~ 1.54 Mb and ~ 0.6 Mb) CNVs remains un-
known. Moreover, an ~ 909 kb de novo deletion encom-
passing MEIS2 and three other genes was found in the
DECIPHER database (patient 286841). Prediction algo-
rithms indicate MEIS2 as sensitive to LOF with a hap-
loinsufficiency score of 0.68 and the pLI score of 0.99.

We found three male patients with hemizygous de-
letions varying in size between 92 kb and 220 kb and
encompassing exon 1 (two cases) or exons 2 and 3 of
the three-exon PTCHDI1 gene on Xp22.11 (Table 4).
In the DECIPHER database, there are at least two
males with an inherited PTCHDI1 deletion. pLI score
of 0.95 strongly suggest that PTCHDI is intolerant to
LOF variants.

Discussion

Clinical WES studies showed that pathogenic variants
occur de novo in ~87% of patients with an established
molecular diagnosis for an autosomal dominant disease
trait [42]. Moreover, de novo mutations, both SNV and
CNV, have been demonstrated to represent an important
cause of ID/DD [81, 82] and damaging de novo muta-
tions are significantly enriched (P =8.0 x 10”%; odds ratio
[OR] =1.84) in patients with ASD when compared to
controls [83]. CNV alleles, whether intragenic or gene-
encompassing, represent a key modality of disease caus-
ing variation as heterozygous alleles associated with
dominant disease traits or contributing to carrier state
for recessive traits [58]. Genomic CNV deletions and
frameshifting intragenic duplication CNVs can lead to
allele LOF. Genic CNV can be responsible for 14—60%

of disease alleles in selected recent studies of novel dis-
ease genes (BPTF [59], NONO [60], PSMDi2 [61],
TANGO?2 [62], TRIP12 [65]) and 7-26% of families of
different disease cohorts (Bardet Biedl ciliopathies [84],
primary immune deficiency disorders [85], brain malfor-
mations [36], an Arabic DD cohort [86], unsolved clin-
ical exomes [87]). To advance the clinical investigation
of CNVs as pathogenic alleles, we studied de novo CNVs
and hemizygous deletion CNVs in males, involving both
known and candidate disease genes using high-
resolution exon-targeted clinical CMA data from over
62,000 patients. Our study indicated four genes
ARGLUI1, STK3, MEIS2, and PTCHDI1 as having the
strongest evidence for disease association.

ARGLUI (arginine and glutamate rich protein 1) was
reported to play a regulatory role in gene transcription
through its interaction with MED1 Mediator complexes
[88]. The highest expression level of this gene was found
in the cerebellum (GTEx database). The neighboring
EFNB2 (Ephrin B2) encodes a member of the Eph recep-
tor family. In previous cytogenetic studies, two large 13q
de novo deletions (9 Mb and 28 Mb in size) involving
both ARGLUI and EFNB2 were reported in patients
with mild anorectal malformations and EFNB2 was pro-
posed as a good candidate disease gene [89]. In support
of this notion, studies in mice revealed that 28% of
heterozygous Efnb2 knockout mice presented with
mild anorectal malformations [90], closely resembling
those observed in patients with EFNB2. However,
none of our patients with CNV deletions involving
EFNB2 had anorectal malformations. Most patients
manifested neurological anomalies including DD con-
firmed in three out of four individuals. In addition,
clinical evaluation of Pt.1 with a de novo 1 Mb dele-
tion revealed developmental regression and ASD,
whereas features of Pt.3 who carries a LOF point
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Table 3 Clinical information on patients with MEIS2 variants

Reference Previous cases
Case number Erdogan et al; Chen et al; Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 (DECIPHER
Crowley et al; Johansson 286841)
et al. (5 cases in 2 families);
Louw et al. (4 cases); Fujita
et al.
Gender 8 females; 6 males Male Male Female Male Male Male Female
Variant 6 CNV del (123 kb - chr15: chri15: chri15: chri15: chr15: 36,512,757-  chr15: chr15:36,606,006-
5.6 Mb); 1 CNV dup (58 kb); 37,328986- 35,001,138- 33,894,032- 35,001,138- 38,052,959" 36,790,702- 37,515,525
1 stop-gain; 1 frameshift 37,332,2497 39,899,594 38,659,166 38,474,933 37,404,359°
32 kb del 49 Mbdel 48Mbdel 347 Mbdel 1.54 Mb del 0.6 Mb del 0.9 Mb del
Confirmation PCR+ FISH FISH FISH PCR + Sanger PCR+ Unknown
method Sanger Sanger
Affected genes MEIS2 MEIS2+14  MEIS2+21  MEIS2+7  MEIS2+1 other MEIS2+1  MEIS2
other other other gene other gene
genes genes genes
Inheritance 9 de novo; 4 inherited; 1 De novo De novo De novo Mat Unknown Unknown  De novo
mosaic
Parental studies CMA FISH FISH FISH N/A N/A Unknown
Cleft lip and 12 out of 14 + N/A N/A N/A Bifid uvula N/A Bifid uvula
cleft palate
Cardiac Ventricular septal defect (7); NR N/A N/A NR NR NR Learning
malformation atrial septal defect (2); problems,
LVOTO; CoA aggressive
behavior
Cognitive and  ID (7); delayed (6); ASD (2);  NR N/A N/A ASD Global DD, ASD, ASD? Slower verbal
behavioral LD (2) ADHD development
phenotype
Verbal 4 out of 4 Possibly N/A N/A NR Delayed verbal Delayed NR
developmental milestones language
delay skills
Motor 12 out of 12 NR N/A N/A NR Delayed motor NR NR
developmental milestones
delay
Walked at age 14 months — 3 years NR N/A N/A NR 2 years NR NR
Gastro- 2 out of 2 NR N/A N/A NR NR NR NR
esophageal
reflux
Other features  Hypotonia; prolapse of NR Hypertonia MCA NR Asthma; sister NR Calcaneovalgus,

epiglottis; bilateral

with Ebstein’s

velopharyngeal

moderate hearing loss; cardiac anomaly; insufficiency,
agenesis of the right family history of asymmetric
tympanic membrane; a ID; maternal chest

gracile corpus callosum;
congenital lobar
emphysema, syndactyly;
severe hypermetropia,
severe constipation

prenatal cocaine
use

2CNV coordinates obtained using PCR and Sanger sequencing of breakpoint junction; note that Sanger sequencing of breakpoint junction PCR amplification
product in Pt1 was affected by the homonucleotide tracts (poly-A/T) close by the breakpoint junction; therefore, the CNV coordinates in Pt1 were determined by
the coordinates of the poly A/T tracts

N/A not available, NR not reported, ID intellectual disability, ASD Autism Spectrum Disorder, LD learning disability, LVOTO left ventricular outflow tract obstruction,
CoA coarctation of the aorta, CHD coronary heart disease, MCA multiple congenital anomalies, Mat maternal

missense variants in EFNB2 were inherited from
healthy parents), we propose that ARGLUI rather
than EFNB2 is a better candidate gene responsible for
the neurological anomalies.

mutation in ARGLUI included abnormal movement,
cerebellar hypoplasia, and oculomotor apraxia. Given
that we did not find additional evidence supporting
EFNB2 as a disease-associated gene (i.e. all validated
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Table 4 Clinical information on patients with PTCHD1 variants
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Clinical features Pt1 Pt2 Pt3
Gender Male Male Male
Variant chrX: 23,269,452-23,364,920 chrX: 23,395,713-23,487,393° chrX: 23,140,737-23,360,470°

95 kb, exon 1 deletion

Confirmation method N/A
Affected genes PTCHD1
Inheritance Mat
Parental studies CMA
ASD +
DD/ID +
ADHD +

Other Hypotonia, speech impairment

92 kb, exons 2-3 deletion 220 kb, exon 1 deletion

PCR + Sanger PCR + Sanger
PTCHD1 PTCHD1
Unknown Unknown

N/A N/A

N/A Autistic features
+ +

N/A +

N/A N/A

@ - CNV coordinates obtained using PCR and Sanger sequencing of breakpoint junction

N/A not available, DD developmental delay, ID intellectual disability, Mat maternal

STK3 (also known as MST2) encodes serine/threo-
nine-protein kinase 3, a component of the Hippo path-
way that plays an important role in organ size regulation
and tumor suppression by restricting proliferation and
promoting apoptosis. Loss of Hpo (homologue of MSTI
and MST2) in Drosophila causes tissue overgrowth [91].
Mouse studies showed that loss of MstI and Mst2 leads
to severe growth retardation and other embryonic ab-
normalities, suggesting that both genes are crucial in
early mouse development [92]. We identified four small-
sized deletions encompassing 1-3 exons of the STK3
gene in individuals with different congenital anomalies
(Table 2). Importantly, two of those deletions were de
novo events. However, the STK3 haploinsufficiency score
of 0.12 and pLI score of 0 do not support its pathogen-
icity. The contradictory findings between haploinsuffi-
ciency prediction scores and identification of two de
novo exonic deletions, which suggested likely pathogen-
icity of LOF variants in STK3, could potentially be ex-
plained by incomplete penetrance or alternative disease
contributing mechanisms other than haploinsufficiency.

MEIS2 is expressed during early fetal brain develop-
ment in humans [93] and was proposed to contribute to
the development of tissues originating from the neural
crest, similarly to the mouse orthologue found to be
expressed in neural crest cells. Homozygous Meis2 defi-
ciency in mice results in perturbed development of the
craniofacial skeleton and abnormalities in the heart and
cranial nerves [74, 94]. Thus far, nine deletion CNVs of
this gene were identified in patients with cleft palate
(seven individuals), atrial or ventricular septal defect
(four individuals), and mild to severe ID (eight individ-
uals) [69, 70, 72]. Recently, a more severe phenotype of
ID, cleft palate, and heart defects was associated with de
novo frameshift deletion (p.Arg333del) and a de novo
stop-gain SNV (p.Ser204*), suggesting that a truncated

protein may cause a more severe clinical consequence
than haploinsufficiency through a potential dominant-
negative mechanism [71, 73, 74]. Our patients with a
CNV deletion have a relatively milder phenotype, includ-
ing DD, ASD (three patients), delayed verbal (three pa-
tients) and motor milestones (one patient), cleft palate
(one patient), and bifid uvula (one patient). In contrast
to previously reported cases, none of our patients with
CNV deletions had cardiac defects. Similar phenotypic
features (asymmetry of the thorax, bifid uvula, and a
specific learning disability) were found in one patient
with MEIS2 deletion reported in the DECIPHER data-
base. MEIS2 maps to 15q14 distal to the Angelman/Pra-
der-Willi syndromes genomic region on 15q11.2q12 and
the CHRNA7 gene on 15q13.3 (located 5 Mb from
MEIS?2). Thus, better understanding of the MEIS2 alter-
nations may help to elucidate the phenotypic spectrum
of patients with larger-sized deletions encompassing
proximal chromosome 15q.

PTCHDI on Xp22.11 is highly expressed in the brain, es-
pecially in the cerebellum [80]. Recent functional studies
reported that during early postnatal mouse development,
Ptchdl is selectively expressed in the thalamic reticular nu-
cleus (TRN), a group of GABAergic neurons that regulate
thalamo-cortical transmission, sleep rhythms, and attention
[95]. It was suggested that Ptchdl plays a role in the hedge-
hog signaling pathway [75]. Moreover, it was shown that a
conditional TRN Ptchdl deletion causes attention deficit
and hyperactivity, whereas the constitutional deletion of
this gene leads to a potentially more severe phenotype, in-
cluding learning impairment, hyper-aggression, and motor
defects [95]. Deletions involving PTCHDI, the upstream
regulatory region encoding PTCHDI-AS and DDX53, or
both were initially reported in individuals with ASD [75—
77], ID [78], or both. Identification of additional male pa-
tients with CNV deletions or truncating SNVs, involving
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PTCHDI, further support LOF of this gene as disease-
contributing for non-syndromic neurodevelopmental disor-
ders, including ID, ASD, hypotonia, and behavioral abnor-
malities [79, 80]. Importantly, PTCHDI is listed in the
SFARI gene database (https://genesfariorg) as a strong
candidate gene for ASD and DD/ID. Consistent with this,
we identified three male patients with deletions of PTCHD1
who all manifested ASD, DD, or both (Table 4).

In summary, we applied computational scores that con-
sider the vulnerability of genes to LOF and variant burden.
We found that genes with pathogenic variants based on de
novo occurrence also tend to have extreme values of hap-
loinsufficiency scores and variant damage or pathogenicity
burden. However, there were some genes that appear to
harbor pathogenic variants but had prediction scores argu-
ing against their pathogenicity due to LOF. Although the
pattern between computational prediction and de novo var-
iants are generally concordant, the lack of fit reinforces that
computational predictions alone are perhaps insufficient for
interpreting variation in the absence of transmission infor-
mation and additional functional studies.

Conclusions

CNVs are a key class of disease causing variation. Our data
further document the efficacy of exon-targeted CMA for
the detection of genic and exonic CNVs, complementing
WES in clinical diagnostics, and its potential for discovery
of novel disease genes. Notably, exon-targeted CMA de-
tected several pathogenic heterozygous and homozygous
single-exon CNVs missed by clinical WES analyses.
Technological advances and decreasing costs of whole-
genome sequencing (WGS) may eventually make this ap-
proach a method of choice for detection of both SN'Vs and
small CNVs, thus replacing CMA and WES; nevertheless,
the clinical utility and implementation of WGS remains sty-
mied by lack of objective studies documenting improved
molecular diagnosis in comparison to WES plus CMA [87].
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