20 research outputs found

    Anomalous Transport in Holographic Chiral Superfluids via Kubo Formulae

    Full text link
    We study anomalous conductivities in Chiral Superfluids in the framework of two different holographic models, by means of Kubo formulae. In addition, we point out the existence of an anomalous transport phenomenon that consists in the presence of a charge density when the superfluid velocity is aligned with a magnetic field. It has been pointed out recently that certain chiral conductivities in holographic superfluids exhibit universal behavior at zero temperature. We show that anomalous conductivities always stabilize at low temperatures in our setup. Even though the particular value they acquire is model-dependent, it seems to be robust and determined solely by the interplay between the broken symmetries and the anomalies.Comment: 23 pages, 22 figures. v2: references added, minor typos corrected. v3: footnotes added; published versio

    Second Order Transport Coefficient from Chiral Anomaly at Weak Coupling: Diagrammatic Resummation

    Full text link
    We compute one of the second order transport coefficients arising from the chiral anomaly in a high temperature weakly coupled regime of quark-gluon plasma. This transport coefficient is responsible for the CP-odd current that is proportional to the time derivative of the magnetic field, and can be considered as a first correction to the chiral magnetic conductivity at finite, small frequency. We observe that this transport coefficient has a non-analytic dependence on the coupling as 1/(g4log(1/g))\sim 1/(g^4 \log(1/g)) at weak coupling regime, which necessitates a re-summation of infinite ladder diagrams with leading pinch singularities to get a correct leading log result: a feature quite similar to that one finds in the computation of electric conductivity. We formulate and solve the relevant CP-odd Schwinger-Dyson equation in real-time perturbation theory that reduces to a coupled set of second order differential equations at leading log order. Our result for this second order transport coefficient indicates that chiral magnetic current has some resistance to the time change of magnetic field, which may be called "chiral induction effect". We also discuss the case of color current induced by color magnetic field.Comment: 54 pages, 8 figure

    Anomalous magnetoconductivity and relaxation times in holography

    Get PDF
    We study the magnetoconductivity induced by the axial anomaly via the chiral magnetic effect in strongly coupled holographic models. An important ingredient in our models is that the axial charge is non-conserved beyond the axial anomaly. We achieve this either by explicit symmetry breaking via a non-vanishing non-normalisable mode of an axially charged scalar or using a Stuckelberg field to make the AdS-bulk gauge field massive. The DC magnetoconductivites can be calculated analytically. They take a universal form in terms of gauge field mass at the horizon and quadratic dependence on the magnetic field. The axial charge relaxation time grows linearly with magnetic field in the large BB regime. Most strikingly positive magnetoconductivity is still present even when the relaxation times are short τ51/(πT)\tau_5 \approx 1/(\pi T) and the axial charge can not be thought of as an approximate symmetry. In the U(1)AU(1)_A explicit breaking model, we also observe that the axial magnetic conductivity in the limit of strong symmetry breaking approaches the same universal value as for anomalous holographic superconductors in the zero temperature limit.Comment: 44 pages, 12 figures; v2: refs added, sec. 2.3 expande

    Holographic Plasmon Relaxation with and without Broken Translations

    Get PDF
    We study the dynamics and the relaxation of bulk plasmons in strongly coupled and quantum critical systems using the holographic framework. We analyze the dispersion relation of the plasmonic modes in detail for an illustrative class of holographic bottom-up models. Comparing to a simple hydrodynamic formula, we entangle the complicated interplay between the three least damped modes and shed light on the underlying physical processes. Such as the dependence of the plasma frequency and the effective relaxation time in terms of the electromagnetic coupling, the charge and the temperature of the system. Introducing momentum dissipation, we then identify its additional contribution to the damping. Finally, we consider the spontaneous symmetry breaking (SSB) of translational invariance. Upon dialing the strength of the SSB, we observe an increase of the longitudinal sound speed controlled by the elastic moduli and a decrease in the plasma frequency of the gapped plasmon. We comment on the condensed matter interpretation of this mechanism.Comment: v2: improved discussions, added results in the SSB section, references added; matching the published version in JHE

    Holographic quenches and anomalous transport

    Get PDF
    We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.Comment: 34 pages, 10 figure

    Holographic s+p Superconductors

    Get PDF
    We study the phase diagram of a holographic model realizing a U(2) global symmetry on the boundary and show that at low temperature a phase with both scalar s and vector p condensates exists. This is the s+p-wave phase where the global U(2) symmetry and also the spatial rotational symmetry are spontaneously broken. By studying the free energy we show that this phase is preferred when it exists. We also consider unbalanced configurations where a second chemical potential is turned on. They present a rich phase diagram characterized by the competition and coexistence of the s and p order parameters.Comment: 6 pages, 4 figures; v3: published version, clarifications and references adde

    Holographic Type II Goldstone bosons

    Get PDF
    The Goldstone theorem implies the appearance of an ungapped mode whenever a continuous global symmetry is spontaneously broken. In general it does not say anything about the precise form of the dispersion relation nor does it imply that there is one massless mode for each broken symmetry generator. It is a well-established fact that even for relativistic field theories in the presence of a chemical potential Goldstone modes with quadratic dispersion relation, the type II Goldstone bosons, appear in the spectrum. We develop two holographic models that feature type II Goldstone modes as part of the quasinormal mode spectrum. The models are based on simple generalizations with U(2) symmetry of the well-studied holographic s-wave superfluid. Our results include Goldstone modes without broken generators but with unusual realization of symmetries and a frequency dependent conductivity of striking resemblance to the one of Graphene.Comment: 47 pages, 21 figures; v2: references and clarifications added, typos correcte

    Holographic Superfluids and the Landau Criterion

    Get PDF
    We revisit the question of stability of holographic superfluids with finite superfluid velocity. Our method is based on applying the Landau criterion to the Quasinormal Mode (QNM) spectrum. In particular we study the QNMs related to the Goldstone modes of spontaneous symmetry breaking with linear and quadratic dispersions.In the linear case we show that the sound velocity becomes negative for large enough superfluid velocity and that the imaginary part of the quasinormal frequency moves to the upper half plane. Since the instability is strongest at finite wavelength, we take this as an indication for the existence of an inhomogeneous or striped condensed phase for large superfluid velocity. In the quadratic case the instability is present for arbitrarily small superfluid velocity.Comment: 26 pages, 10 Figures; v2: authors's name corrected, reference adde

    Holographic Type II Goldstone bosons

    Get PDF
    The Goldstone theorem implies the appearance of an ungapped mode whenever a continuous global symmetry is spontaneously broken. In general it does not say anything about the precise form of the dispersion relation nor does it imply that there is one massless mode for each broken symmetry generator. It is a well-established fact that even for relativistic field theories in the presence of a chemical potential Goldstone modes with quadratic dispersion relation, the type II Goldstone bosons, appear in the spectrum. We develop two holographic models that feature type II Goldstone modes as part of the quasinormal mode spectrum. The models are based on simple generalizations with U(2) symmetry of the well-studied holographic s-wave superfluid. Our results include Goldstone modes without broken generators but with unusual realization of symmetries and a frequency dependent conductivity of striking resemblance to the one of Graphene.Instituto de Física La Plat
    corecore