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chiral separation conductivity and the axial magnetic conductivity for the consistent axial
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Keywords: Holography and condensed matter physics (AdS/CMT), Gauge-gravity

correspondence

ArXiv ePrint: 1504.06566

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2015)117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81737029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:amadeo.j@gmail.com
mailto:karl.landsteiner@uam.es
mailto:yan.liu@csic.es
mailto:yawen.sun@csic.es
http://arxiv.org/abs/1504.06566
http://dx.doi.org/10.1007/JHEP07(2015)117


J
H
E
P
0
7
(
2
0
1
5
)
1
1
7

Contents

1 Introduction 1

2 Holographic U(1)A explicit breaking model 5

2.1 Background in the probe limit 7

2.2 Magnetoconductivity and relaxation time 9

2.2.1 DC conductivity: negative magnetoresistivity 11

2.2.2 Calculating χ5 and τ5 independently 14

2.2.3 Scaling behaviours of χ5 and τ5 on B and M 16

2.3 The anomalous transport coefficients 18

3 Holographic massive U(1)A × U(1)V model 20

3.1 Magnetoconductivity and relaxation time 22

3.1.1 Electric DC conductivity 22

3.1.2 Axial charge dissipation time 24

3.1.3 Static axial susceptibility 25

4 Remarks: relations of two models and DC results from small ω matching 26

4.1 Comparison between the two models 26

4.2 Near far matching calculation for the AC conductivity at low frequency 27

5 Conclusion and discussion 30

A Quantum critical conductivity and equations 31

A.1 The quantum critical conductivity σE in the holographic model without

axial charge dissipation 31

A.2 Equations for the background in the explicit U(1)A breaking model 32

A.3 Equations for the fluctuations in the explicit U(1)A breaking model 32

A.3.1 Equations of motion for longitudinal fluctuations at zero momentum 32

A.3.2 Equations of motion for transverse fluctuations at zero momentum 33

A.3.3 Equations for DC conductivity calculation 33

A.3.4 Equations for transverse fluctuations at finite ω and k 34

A.4 Equations of fluctuations for massive U(1)A 34

1 Introduction

Anomaly induced transport phenomena have been in the focus of much theoretical and

experimental research lately. One particular example is the so-called chiral magnetic effect

(CME) [1].1 It states that in the presence of an imbalance in the number of left-handed and

1Early version of the CME have appeared in [2–4]. It has been derived in a variety of approaches ranging

from hydrodynamics to the gauge gravity duality, e.g. [5–16].
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right-handed charged fermions an electric current is generated in a magnetic field whose

origin can be traced back to the presence of the axial anomaly

∂µJ
µ
5 =

c

8
εµνρσFµνFρσ (1.1)

with the anomaly constant c = 1/(2π2) for a single Weyl fermion. The chiral magnetic

effect is most conveniently expressed in the form

J = cµ5B , (1.2)

where the axial chemical potential µ5 parametrises the imbalance in the number of left-

and right-handed fermions. The subtleties in the interpretation of this formula have been

discussed extensively in the literature [17–19]. Here it shall suffice to emphasise that µ5

is a parameter that characterises a state in which the chiral imbalance has been induced

in a dynamical way, e.g. via the very axial anomaly by switching on parallel electric and

magnetic fields. Indeed such a field configuration will induce an axial charge whose Fourier

transform is

ρ5 =
i

ω
cE ·B . (1.3)

We also relate axial charge and axial chemical potential via an axial charge susceptibility

ρ5 = χ5µ5 and using (1.2) we obtain the electric field response in the current

Ji = σEEi +
i

ω

c2BiBj
χ5

Ej . (1.4)

Here σE denotes the quantum critical conductivity (also named as charge-conjugation

symmetric conductivity, or Ohmic conductivity). In [20] this effect has been studied in

both hydrodynamics and holography and the result indeed confirmed the above formula.

It was found that the formula applies even in the large magnetic field regime in which the

anomalous hydrodynamics of [5] is not applicable anymore. More precisely it turned out

that σE became anisotropic and its longitudinal component is exponentially suppressed for

large B, see (A.2). At the same time the axial susceptibility becomes linear in the magnetic

field, consistent with the expectation of Landau level physics at weak coupling. The delta

function peak indicated by the imaginary pole in (1.4) therefore showed a cross over to

a scaling behaviour that was linear in B. This indeed is consistent with weak coupling

results [21–23].

Thus if axial charge was conserved up to the axial anomaly this would result in a

perfect superconductor. The pole in the imaginary part implies indeed a delta function

singularity located at zero frequency in the real part via the Kramers-Kronig relation.

Alas nature seems to abhor axial symmetries even beyond the electromagnetic axial

anomaly. Fermions are typically massive. Another way the axial symmetry is broken is

via the QCD contribution to the anomaly.2 In both cases it is more realistic to allow

for a non-conservation of the axial charge and introduce an axial charge relaxation time

2We assume the electromagnetic fields to be external not dynamical contributions in the axial anomaly.

Instabilities arising from dynamical gauge field have been discussed in [24–27].
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τ5. In this case the frequency is shifted ω → ω + i/τ5 in (1.4) resulting in a finite DC

magnetoconductivity

Ji = σEEi + τ5
c2BiBj
χ5

Ej . (1.5)

In the studies up to now the relaxation time τ5 has been introduced via a naive re-

laxation time approximation. Basically it was added “by hand” and did not represent

dynamics inherent to the holographic system.

Recently a number of experiments on Dirac or Weyl-(semi-)metals have reported strong

positive magnetoconductivity along the magnetic field [28–32]. They furthermore always

show a quadratic dependence on the magnetic field strength.3 These materials are candi-

dates for realising the axial anomaly in a solid state setup. They do however also have an

intrinsic axial charge relaxation time since the axial charge is realised as an accidental low

energy symmetry.

This motivates us to study the anomaly induced magnetoconductivity in models in

which the relaxation time is an intrinsic property of the model. In particular we will

concentrate on two models with different symmetry breaking mechanisms.

The first model uses a massless bulk gauge field for the axial current. We break the axial

symmetry by introducing a tree level coupling to a non-normalisable mode of an axially

charged scalar field. We chose the bulk mass of the scalar so that the dimension of the

breaking parameter is one and can be interpreted as a mass M for the dual fermions. The

weak coupling interpretation is now that the divergence of the axial current is of the form

∂µJ
µ
5 = Mψ̄γ5ψ + cemε

µνρβFµνFρβ . (1.6)

Although the system has the same ingredients as a holographic superconductor its dynamics

is quite different due to the fact that it is the non-normalisable mode that is non-vanishing.

In particular the DC conductivity is finite and the quasinormal mode spectrum does not

contain sound modes. The axial charge relaxation time is determined by the the mass

parameter M . When τ5T � 1 we can think of the axial symmetry as approximately con-

served. In this regime we indeed find linear scaling of the susceptibility and at the same

time linear scaling of the relaxation time τ5 with large magnetic field. Consequently the

magnetoconductivity scales quadratic with magnetic field which is at odds with the naive

relaxation time approximation that assumes independence of τ5 on B. When τ5T ' 1

we do not really have justification anymore to think of the axial charge as approximately

conserved. Generically the quasinormal frequencies for non-conserved operators have imag-

inary values of the order of T and therefore there is no hierarchy between the relaxation of

the axial charge and a generic perturbation. In this regime the derivation of the magne-

toconductivity (1.5) outlined above becomes invalid. Somewhat surprisingly we still find

a magnetoconductivity that depends quadratically in the magnetic field strength in this

regime! In fact we can find an exact analytic expression for the magnetoconductivity that

3There is a regime for very small magnetic field in which the conductivity first decreases with magnetic

field. This seems to be a disorder effect called “weak anti-localization” and most likely represents physics

unrelated to the anomaly.
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confirms the exact quadratic dependence on the magnetic field for all values of the charge

relaxation time.

The second model uses a massive gauge field. As is well-known global symmetries

correspond to massless gauge field in holography. The mass of the gauge field gives the dual

current operator an anomalous dimension ∆ = −1 +
√

1 +m2. Since conformal symmetry

implies that the dimension of a conserved current is precisely d in d + 1 dimensions this

means that a massive gauge field corresponds to a non-conserved vector operator in a

conformal theory. In QCD the axial anomaly for U(1)A receives not only electromagnetic

but also a gluonic contribution. Holography effectively replaces the gluon dynamics by

gravity in anti-de Sitter space. It has been argued some time ago in [33] that the gravity

dual of this gluonic contribution to the anomaly is a Stückelberg mass term for a vector

field. Therefore the divergence of the axial current is dual to the weak coupling form

∂µJ
µ
5 = εµνρβ

(
cemFµνFρβ + cstrongtr (GµνGρβ)

)
(1.7)

where the anomaly coefficients cem and cstrong depend on the fermion spectrum. Another

way of viewing such models is by noting that the anomaly is a dimension four operator

and therefore should couple to a marginal scalar field, this is the Stückelberg field. One

might also include another real scalar field that can serve as the dilaton, the source for the

kinetic term of the non-abelian gauge fields, which also would allow to break the underlying

conformal symmetry via a dilaton flow. Such models have already been introduced and

studied in [34, 35]. We will refine that analysis of the magnetoconductivity of [35]. We find

an analytic result for the magnetoconductivity and it turns out that it is of the same form

as for the previous model, except that now the mass of the gauge field is constant through-

out the bulk spacetime. Again the magnetic field dependence is quadratic independently

of the value of the gauge field mass. We also calculate the magnetic field dependence of

the axial relaxation time and the axial charge susceptibility. Whereas the relaxation time

shows linear dependence in B the susceptibility has a scaling that is determined by the

dimension of the axial current B1+∆. This is an indication that for this model the simple

hydrodynamic reasoning does not apply straightforwardly since it would predict a depen-

dence of the form τ5/χ5. We also emphasise that when the current operator has dimension

3 + ∆ the source for the time component J0
5 is not an axial chemical potential but rather

a true coupling in the theory.

This paper is organised as follows: in section 2 we study the model with an axially

charged scalar field. We switch on a non-normalisable mode that serves as an axial symme-

try breaking parameter (fermion mass). We compute the magnetoconductivity analytically

and check the expression numerically. We numerically study the large B behaviour of the

relaxation time and the axial susceptibility and find linear scaling for both in the regime

Tτ5 � 1. This is the regime in which the hydrodynamic reasoning applies and it indicates

indeed quadratic dependence of the magnetoconductivity on B. In the regime Tτ5 ' 1

hydrodynamics does not apply anymore since the axial charge is not even approximately

conserved but the analytic formula is of course still valid in this regime. In section 3 we

study the model with a Stückelberg axion. We find the analytic result for the magneto-

conductivity and check it numerically. In this model we can also find an analytic result for
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the axial charge susceptibility. It shows scaling with B1+∆ for large B. Numerically we

also find linear scaling in B of the axial charge relaxation time. In section 4 we present a

comparison of the two models and an alternative derivation of the DC conductivity based

on near far matching method. We finish in section 5 with a discussion of our results.

Technical details of the calculations are summarised in the appendix.

2 Holographic U(1)A explicit breaking model

It has long been known that for a chiral anomalous fluid in presence of magnetic field, a

large longitudinal magnetoconductivity due to the chiral anomaly is induced [21–23]. In a

previous study in the framework of hydrodynamics [20], in order to get a finite longitudinal

DC magnetoconductivity, it was necessary to include energy, momentum and also (axial)

charge dissipation. However, in the limit of zero densities (i.e. µ/(ε+ p) = µ5/(ε+ p) = 0),

axial charge dissipation alone suffices to give a finite value.

In this section, we consider the holographic axial charge dissipation effect in the mag-

netoconductivity by breaking the axial charge U(1)A symmetry with a scalar source. We

will also introduce two U(1) symmetries and because the electric U(1)V symmetry is still

conserved, the scalar field only couples to the axial gauge field in the bulk. In this way the

anomaly caused buildup of axial charge will be compensated by the dissipation sourced

by this scalar operator resulting in a finite DC longitudinal magnetoconductivity. We will

consider the following action4

S =

∫
d5x
√
−g
[

1

2κ2

(
R+ 12

)
− 1

4
F2 − 1

4
F 2 +

α

3
εµνρστAµ

(
FνρFστ + 3FνρFστ

)
− (DµΦ)∗(DµΦ)−m2

sΦ
∗Φ

]
(2.1)

with

Fµν = ∂µVν − ∂νVµ , Fµν = ∂µAν − ∂νAµ , Dµ = ∇µ − iqAµ

where the gauge fields Vµ and Aµ correspond to the vector and axial U(1) currents respec-

tively and Φ is a complex scalar field with mass ms. Similar models have been studied

before in e.g. [36, 37] to describe the dual anomalous superconductor with U(1)V ×U(1)A
symmetry where a charged scalar field is introduced to spontaneously break U(1)V while

not U(1)A. In this paper we shall turn on a non-zero source associated to the dual scalar

operator in order to break the U(1)A symmetry explicitly, which introduces an axial charge

dissipation mechanism in our system.

Note that we do have a conserved current associated to U(1)V , which means that

the electric charge is always conserved. With the mass term for the scalar field, the dual

scalar operator has a scaling dimension ∆Φ = 2 ±
√

4 +m2
s and to make sure that the

scaling dimension of the axial current does not change, m2
s has to be negative and above

the BF bound (i.e. −4 ≤ m2
s < 0). Without loss of generality, in the following we will

choose m2
s = −3, which is the most appropriate value as at this mass the scalar operator

4We have set the curvature scale L = 1.
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reproduces exactly the scaling dimension of the mass term for free fermions.5 Thus the

conformal dimension of the dual scalar operator is 3 and the corresponding source is of

dimension 1. This reminds us to the four dimensional free massive fermion systems.

We will study the system in the probe limit,6 which means only axial charge dissipation

is required to get a finite longitudinal DC magnetoconductivity. In the probe limit, fields

live in the Schwartzschild black hole background in the bulk

ds2 = r2
(
− f(r)dt2 + dx2

)
+

dr2

r2f(r)
, f(r) = 1− r4

0

r4
, (2.2)

with the dual thermodynamical quantities

ε = 3r4
0 , s = 4πr3

0 , T =
r0

π
.

The equations of motion for these matter fields in the Schwarzschild-AdS5 background are

∇νFνµ + 2αεµτβρσFτβFρσ = 0 , (2.3)

∇νF νµ + αεµτβρσ
(
FτβFρσ + FτβFρσ

)
+ iq

(
Φ(DµΦ)∗ − Φ∗(DµΦ)

)
= 0 , (2.4)

DµD
µΦ−m2

sΦ = 0 . (2.5)

Let us briefly comment on the Ward identity for the current. The dual consistent

currents are obtained as the variation of the total action with respect to the gauge fields,

Jµ(con) = lim
r→∞

√
−g
(
Fµr + 4αεrµβρσAβFρσ

)
+ c.t. , (2.6)

Jµ5(con) = lim
r→∞

√
−g
(
Fµr +

4α

3
εrµβρσAβFρσ

)
+ c.t. . (2.7)

From the on-shell condition, we have

∂µJ
µ
(con) = 0 , (2.8)

∂µJ
µ
5(con) = lim

r→∞

√
−g
(
−α

3
εrµβρσ (FµβFρσ + 3FµβFρσ)− iq [Φ(DrΦ)∗ − Φ∗(DrΦ)]

)
+c.t. .

(2.9)

The counterterm contribution is not explicitly shown because it does not add any

valuable information. The last term in (2.9) contributes to the 1-point function only if

the non-normalisable mode of the scalar field is switched on. It is tempting to interpret it

as the contribution of the fermion mass to the Ward identity via Mψ̄γ5ψ. The covariant

version the current is obtained by removing the Chern-Simons term from (2.6)–(2.7), i.e.

Jµ = lim
r→∞

√
−gFµr + c.t. , (2.10)

Jµ5 = lim
r→∞

√
−gFµr + c.t. . (2.11)

5Of course the properties of the holographic system could be far away from the free massive fermion

system. However it is very intriguing that we do find some similar properties of our holographic model

compared to free Fermi gas picture. This is similar to the fermionic holographic case with special mass of

the probe fermion such that the dimension of the dual fermionic operator approaches that of a free fermion

where the dual system has Fermi surface but not exactly Landau’s Fermi liquid theory [38, 39].
6Probe limit means that the backreaction of the matter field is totally unimportant for the gravity

background. For the background we assume in the next subsection, we should have T � κµ, κµ5,
√
κB, κM

where the gravitational constant κ� 1.
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Since the covariant current is the one which has been widely used in the framework of

hydrodynamics, we will use the covariant current in most parts of our paper and briefly

comment on the behaviour of the consistent current in subsection 2.3.

2.1 Background in the probe limit

Since we are going to study the magneto response, we turn on a background magnetic field

in the U(1)V sector. We consider the following background with non zero components:

Vµ =
(
Vt(r), By, 0, Vz(r), 0

)
, Aµ =

(
At(r), 0, 0, Az(r), 0

)
, Φ(r) = φ(r) . (2.12)

It is useful to note that this ansatz is invariant under transformation (r, r0, Vt, Vz, At, Az)→
b−1(r, r0, Vt, Vz, At, Az), (t, x, y, z)→ b(t, x, y, z) and B → b−2B. We can set r0 to be 1 by

choosing b = r0. Plugging this ansatz into the equations (2.3)–(2.5) we obtain five second

order ODEs for five unknown real functions Vt, Vz, At, Az, φ. The equations can be found

in (A.4)–(A.8) of the appendix A.2. We can furthermore reduce them into four second

order ODEs as (A.9), (A.5), (A.6) and (A.8) for four functions Vt, φ, At, Az. Once we have

the solutions for these four fields, Vz is totally fixed by imposing normalisable boundary

condition.

For m2
s = −3, near the conformal boundary r →∞ we have

Vt ' µ−
ρ

2r2
, (2.13)

φ ' M

r

(
1 +

λ1

r2
ln r
)

+
ϕ

r3
, (2.14)

At ' µ5

(
1 +

µ1

r2
ln r
)
− ρ5

2r2
, (2.15)

Az ' s0

(
1 +

s1

r2
ln r
)

+
s2

r2
(2.16)

with λ1 = 1
2(µ2

5 − s2
0)q2, µ1 = s1 = −q2M2. The interpretation for the boundary value is

the following: µ, µ5 are the chemical potential and axial chemical potential respectively.

M is the source of the scalar operator which explicitly breaks the U(1)A symmetry and

the corresponding response can be obtained to be O = δSren
δM = 2ϕ.7 The parameter

s0 = 0 is the background value of the spatial component of the axial gauge field. If we

had considered spontaneous breaking instead of explicit breaking it would correspond to

a superfluid velocity. In our context it is rather the analogue of the separation of the

Weyl nodes in momentum space of a Weyl semi-metal, i.e. in a weak coupling model this

parameter separates the nodes of left- and right-handed Weyl fermions by an amount s0 in

the z direction in momentum space.

For this system, the solutions of four second order ODEs (A.9), (A.5), (A.6) and (A.8)

are specified by eight integration constants, which correspond to the eight independent

7Note that Sren = S + Sc.t where the counterterm for this special mass is

Sc.t =

∫
bnd

d4x
√
−γ
(
−|Φ|2 +

1

2

(
log r2 − 1

) [1

4
F 2 +

1

4
F2 + |DµΦ|2

])
(2.17)

and γµν is the induced metric near the boundary.
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parameters at the conformal boundary µ, ρ, µ5, ρ5,M, ϕ, s0, s2. Near the horizon, there are

four independent parameters A′t(r0), V ′t (r0), Az(r0), φ(r0) after specifying regular horizon

boundary conditions for At, Vt, φ and Az. Thus for fixed values of m2
s, q, we have a

four -parameter family of black hole solutions, which correspond to µ, µ5, M , s0.

For our purpose of breaking the axial charge conservation symmetry explicitly at the

boundary, we focus on solutions with nonzero M , which sources this explicit breaking of

axial charge conservation. Solutions with finite chemical potential µ and axial chemical

potential µ5 can only be obtained numerically. In fact, as we already know from [20], the

infinite axial charge transfer due to chiral anomaly exists even at both µ = 0 and µ5 = 0.

Thus in this paper we will mainly focus on the µ = µ5 = 0 case and sometimes also the

µ = 0, µ5 6= 0 and µ5 = 0, µ 6= 0 cases for simplicity. We also set the parameter s0 = 0.

In the following we list the bulk background solutions for µ = µ5 = 0, µ = 0, µ5 6= 0 and

µ5 = 0, µ 6= 0 respectively.

• The solution for µ = µ5 = 0 can be obtained easily by choosing Vt = Vz = At = Az =

0 and in this case we can still have non trivial solution for φ with source M . φ can

be solved to be

φ =
M

T

(
2

π

)3/2 r0Γ[3/4]

rΓ[1/4]
EllipticK

[
1− r20

r2

2

]
, (2.18)

where the function EllipticK gives the complete elliptic integral of the first kind. As

µ = µ5 = 0, the response of the scalar operator is completely determined by the

source M and we have

M

φ0
=

Γ[1/4]√
2πΓ[3/4]

r0 ' 1.18r0 ,
O
M

= − Γ[3/4]2

4Γ[5/4]2
r2

0 ' −0.456r2
0 , (2.19)

with M,O the source and response associated to the scalar operator and φ0 the

horizon value of the scalar field. In this case note that for M = 0 we only have the

trivial solution φ = 0.

• The second simple while interesting solution is for Vt = Az = 0 while At, Vz 6= 0

(i.e. µ = 0, µ5 6= 0). In this case solutions are governed by the equations (A.9)

and (A.8) and we can solve the system numerically. The plot for the scalar response

as a function of T or µ5 can be found in figure 1 for several fixed values of source M .

In this case, when M = 0 there can be nontrivial solutions below a certain critical

temperature Tc, which correspond to spontaneous symmetry breaking. For T > Tc
and M = 0, the U(1)A symmetry is not broken and we have the same configuration

as [20]. When µ5/T → 0, the system becomes the previous case with µ = µ5 = 0.

We have checked that the numerical solutions for the response in this limit satisfy

precisely the relation (2.19).

• The third kind of simple while interesting solutions is for At = Vz = 0 while in general

Vt, Az non zero (i.e. µ5 = 0, µ 6= 0). In this case for M = 0 the solution for φ will

be trivial despite µ 6= 0: no solution with spontaneous symmetry breaking will exist

due to the zero axial chemical potential. The solutions of φ for M 6= 0 are different

– 8 –
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Figure 1. The response O as a function of T and µ5 for different sources M . Left: fixing T

and B to be 8Bα/(π2T 2) = 0.1 and varying µ5 for qM/T = 0 (blue), 0.5 (purple), 1 (red) and 2

(black). Right: fixing µ5 and varying T and B at the same time with fixed ratio 8Bα/(π2T 2) = 0.1,

qM/µ5 = 0 (blue), 0.04 (orange), 0.1 (red).

from the solutions in the µ = µ5 = 0 case due to nonzero Az for B 6= 0 case and the

solutions can be obtained numerically, which we will not give in detail here. When

B = 0 we have a simple solution Vt = µ(1 − r20
r2

), Vz = At = Az = 0 and φ is the

same as (2.18).

In the following, we will mainly consider the magnetoconductivity8 for the first case, i.e.

µ = µ5 = 0 and will comment on the other two cases as well for Hall conductivity and

the anomalous transport. A detailed study of the most general cases will be reported in a

follow up work.

2.2 Magnetoconductivity and relaxation time

Without any axial charge dissipation, we know that the dual anomalous system will have

an infinite DC longitudinal conductivity in presence of a background magnetic field [20]. To

show that our explicit breaking U(1)A model indeed encodes the axial charge dissipation,

we need to compute the electric conductivity and the axial charge relaxation time. We

consider the following fluctuations at zero momentum on top of the background (2.12)

δVµ = vµ(r)e−iωt , δAµ = aµ(r)e−iωt , δΦ = Φ1(r, t) + iΦ2(r, t) = (φ1 + iφ2)e−iωt .

For the purpose of calculating the electric conductivity, we will impose the sourceless

boundary condition for δΦ and δAµ while δEz = iwvz at the boundary. We can always

choose the gauge vr = ar = 0 (or vr = φ2 = 0) using the fact that the equations in the

bulk are invariant under the transformation

δVµ → δVµ+∂µΛ1 , δAµ → δAµ+∂µΛ , Φ1 → Φ1−qΛΦ2 , Φ2 → Φ2+qΛ(φ+Φ1) . (2.20)

8Recently the magnetoconductivity has been widely studied in e.g. [40–44] for AdS4/CFT3 with mo-

mentum dissipations. The longitudinal magnetoconductivity is generally monotonically non-increasing as

a function of the magnetic field [45], i.e. positive magnetoresistivity. Though there can be exceptions, e.g.

systems with paramagnetic impurities can have isotropic positive magnetoconductivity, which is caused by

B dependent scatterings. Here we wish to emphasise that the negative (anisotropic) longitudinal magneo-

resistivity is driven by axial anomaly and can be the smoking gun for the existence of axial anomaly.

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
7

Note that in the gauge transformations above, the order of the gauge transformations

should be at the level of perturbations, thus the terms qΛΦ2 and qΛΦ1 can be ignored

as they are second order in perturbations. For these fluctuations at zero momentum, the

equations for the longitudinal fluctuations at, vz, vt, vz, φ1, φ2 and transverse fluctuations

ax, ay, vx, vy decouple from each other. In the µ = µ5 = 0 background, the fluctuation φ1

also decouples from other longitudinal modes, which means that only the fluctuation of the

phase mode φ2/(qφ) plays a role here. These equations can be found in appendix A.3.1

and A.3.2. We will focus on the longitudinal fluctuations to study the effect of axial charge

dissipations on the longitudinal magnetoconductivity in this paper. The discussion on

transverse magnetoresistivity and Hall conductivity can be found in appendix A.3.2.

For the case µ = µ5 = 0 (i.e. At = Az = Vt = Vz = 0), we have three independent

equations of motion for at, vz, φ2 as follows

a′′t +
3

r
a′t −

2q2φ2

r2f
at +

8Bα

r3
v′z − iω

2qφφ2

r2f
= 0 , (2.21)

ωa′t +
8Bαω

r3
vz + 2iqr2f

(
− φ2φ

′ + φφ′2
)

= 0 , (2.22)

v′′z +

(
3

r
+
f ′

f

)
v′z +

ω2

r4f2
vz +

8Bα

r3f
a′t = 0 . (2.23)

Note that the second equation is the equation of motion for ar and is of first derivative

in the fields. The second order equation for φ2 (i.e. the last equation in appendix A.3.1

with At = Az = 0) consistently follows from (2.21), (2.22) and the background equation of

φ. One immediate observation is that Σ5 = 0 which is defined as the response of JAz to the

electric field Ez and this result is the same as the case without axial charge dissipation [20].

When r →∞, we have

vz = v(0)
z +

v
(1)
z

r2
ln r +

v
(2)
z

r2
, at = a

(0)
t +

a
(1)
t

r2
ln r +

a
(2)
t

r2
. (2.24)

From (2.22), we have

φ2 = qφ

(
c0 −

∫ ∞
r

iω
(
r3a′t + 8Bαvz

)
2q2r5fφ2

)
, (2.25)

where c0 is an integration constant which can be chosen to be zero considering the sourceless

boundary condition for φ2. Thus when r →∞, we have

φ2 = qφ

c0 +
iωa

(1)
t

2q2M2

ln r

r2
+
iω
(

2a
(2)
t − 8Bαv

(0)
z

)
4r2q2M2

 . (2.26)

From (2.21) and (2.23), we have a
(1)
t = −q2M2a

(0)
t − iωq2M2c0 and v

(1)
t = ω2

2 v
(0)
t , which

show that the boundary constants a
(1)
t , v

(1)
t are fully determined by a

(0)
t and v

(0)
t . Note

that we always use the combination φ2/(qφ) which is in fact the phase mode fluctuation

−θ(r) if we write δφ = φ(r)eiθ(r).
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To get the magnetoconductivity by solving (2.21)–(2.23), we impose infalling boundary

conditions for vz, at, φ2 at the horizon and sourceless condition for at, φ2 at the conformal

boundary, i.e. c0 = a
(0)
t = 0. At the horizon, the infalling boundary conditions give

vz = (r − r0)
− iω

4r0

(
v(0) −

8Bαa(1)(4r0 − iω) + v(0)ω(ω − 2ir0)

8r2
0(2r0 − iω)

(r − r0) + . . .

)
,

at = (r − r0)
− iω

4r0

(
a(1)(r − r0) + . . .

)
, (2.27)

φ2/(qφ) = (r − r0)
− iω

4r0

(
−
πΓ[1/4]2

(
a(1)r

2
0(4r0 − iω) + 32Bαv(0)

)
16q2r3

0Γ[3/4]2(M/T )2
+ . . .

)
,

where the dots denote terms which are higher order corrections.

In numerics, notice that we have only two linearly independent solutions for (2.21)–

(2.23) which are fully determined by the near horizon values a(1), v(0). Using the fact that

the system is invariant under the residual symmetry at → at + iωΛ, φ2 → φ2− qΛφ, where

Λ is a constant independent of r, we will be able to generate solutions with c0 = 0 for each

independent numerical solution. Then we can use their linear combination to set a
(0)
t = 0

in numerical calculations [46].

We will identify the coefficient in front of 1/r2 of the fall-offs of vz as the dual response,

i.e. we are using the covariant current with 〈JzJz〉R = 2v
(2)
z

v
(0)
z

.9 We plot the AC longitudinal

magnetoconductivity in figure 2. We find that the Drude peak behaviour becomes less

obvious if we increase strength of U(1)A breaking M or decrease the magnetic field B. The

appearance of the Drude peak is caused by the quasinormal mode with purely imaginary

frequency ω = −i/τ5 approaching the real axis. Since we expect no new quasinormal modes

to appear or vanish upon varying the magnetic field a sum rule of the form

d

dB

∫ ∞
0

Re[σ(ω,B)]dω = 0 , (2.28)

is suggested to hold. By considering differences between AC conductivies at different values

of the magnetic field we have checked numerically that this sum rule indeed holds.

2.2.1 DC conductivity: negative magnetoresistivity

From the hydrodynamic calculations in [20] the formula for the longitudinal magnetocon-

ductivity in the µ
ε+p = µ5

ε+p = 0 limit is10

σ = σE +
i

ω + i
τ5

(8Bα)2

χ5
, (2.29)

where χ5 = ∂ρ5
∂µ5

denotes the static axial susceptibility and τ5 is the axial relaxation time. In

the probe limit, as long as we have axial charge dissipation the resulting DC conductivity

9Note that we chose the renormalisation scheme (2.17) such that the response is totally determined by

the coefficient of the subleading term.
10In order that we can treat JµA as an approximately “conserved” quantity, we should have τ5T � 1. We

also use the fact that the anomaly constant c = 8α for the covariant current.
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Figure 2. The behaviour of both real and imaginary parts of AC longitudinal magnetoconductivity

as a function of ω/T for different values of the source qM/T and the magnetic field 8Bα/π2T 2.

Top plots: 8B2α2/(π2T 2) = 0.1 with qM/T = 2 (black), 0.5 (red), 0.1 (blue). Bottom plots:

qM/T = 1, with 8B2α2/(π2T 2) = 1 (blue), 0.5 (red), 0.1 (black). We found that the Drude

behaviour becomes less obvious (or equivalently τ5 decreases) when we increase strength of U(1)A
breaking M or decrease the magnetic field B. Moreover we have checked numerically that the sum

rule d
dB

∫∞
0

Re[σ(ω,B)]dω = 0 holds.

will be finite. The most straightforward way to see the effect of axial charge dissipation

in the longitudinal magnetoconductivity is to go to the DC limit directly and in this limit

we have

σ = σE +
(8Bα)2τ5

χ5
. (2.30)

Note that this hydrodynamic formula only applies in the hydrodynamic limit τ5T � 1,

however, holographic calculations below will apply even beyond this hydrodynamic limit.

Instead of obtaining the DC conductivity by studying the AC conductivity and then

considering its ω → 0 limit, there is an analytic way to directly obtain the DC conduc-

tivity following [47]11 using radially conserved quantities [48]. The idea is to perform the

holographic calculations for conductivity in the exact DC limit, i.e. ω = 0. Then we can

11For a recent application and development of this method see e.g. [40, 42]. As will be shown in the

subsection 4.2, this DC method in our case is equivalent to directly taking the ω → 0 limit for small ω AC

conductivity obtained from near-far matching calculations.
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consider the following perturbations around (2.12):12

δVµ = (vt(r), 0, 0,−Et+ vz(r), 0) , δAµ = (at(r), 0, 0, az(r), ar(r)) , δφ = φ1(r) + iφ2(r) .

(2.31)

Substituting these perturbations into the equations (2.3)–(2.5) we obtain their equations

which can be found in the appendix A.3.3. Note that these equations do not depend on the

background fields Vt, Vz. For zero axial density solution µ5 = 0, i.e. At = Vz = 0, we have

a′′t +
3

r
a′t −

2q2φ2

r2f
at +

8Bα

r3
v′z = 0 , (2.32)

v′′z +

(
3

r
+
f ′

f

)
v′z +

8Bα

r3f
a′t = 0 . (2.33)

Near conformal boundary r →∞, we have

at = a
(0)
t +

a
(1)
t

r2
ln r +

a
(2)
t

r2
+ . . . , vz = v(0)

z +
v

(2)
z

r2
+ . . . (2.34)

with a
(1)
t = −a(0)

t q2M2. From the equation (2.33) we have the conserved quantity along

the radial direction J = −r3fv′z − 8Bαat with ∂rJ = 0, which means J |r→∞ = J |r→r0 .

When r →∞, we impose the sourceless boundary condition for at, i.e. a
(0)
t = 0. Thus the

electric current which is the response of the external electric field can now be calculated at

the horizon to be j = J |r→∞ = J |r→r0 .

The next thing that we need to do is to get J |r→r0 from the near horizon boundary

conditions. At the horizon we have

vz = − E

4πT
ln(r − r0) + · · · , (2.35)

at = − 2E(8Bα)

(4πT )q2r2
0φ0

2 + · · · . (2.36)

Note that near horizon the coefficient of the subleading term in at is a free parameter

which is precisely the shooting parameter that can be used to determine the sourceless

condition for at near boundary. Also note that the near boundary condition (2.36) seems

to be inconsistent with (2.27), however, this is due to the different gauge: if we work in

the gauge φ2 = 0, we should keep ar and the leading order in (2.27) should be the same as

here in the limit ω → 0. It follows immediately

σDC =
j

E
= πT +

32B2α2

π3T 3q2φ2
0

(2.37)

with φ0 the horizon value of the background scalar field. We should emphasise that the

above expression does not depend on the mass of the scalar filed in the bulk and it also

applies for the case µ 6= 0 as long as µ5 = 0. We emphasise that the B2 dependance is

exact. and the recent experiments [29–32] also found this B2 dependence in the longitudinal

magnetoconductivity.

12Note that one can also work in the radial gauge ar = 0 and the same results should be obtained. Here

we include ar in order to totally ignore equations related to φ2.
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For the simple case of µ = 0, i.e. Vt = Vz = At = Az = 0, φ has an analytic

solution (2.18) for m2
s = −3, and we have (2.19), thus

σDC

T
= π +

Γ[1/4]2

4π2Γ[3/4]2
(8Bα/T 2)2

(qM/T )2
' π + 21.6

(
8Bα/(π2T 2)

)2
(qM/T )2

. (2.38)

This is one main results of our paper. In fact this DC magnetoconductivity can also be

obtained analytically using a near far matching calculation for small ω, in which situation

the near horizon boundary conditions (2.35) come from solutions in the near region with

infalling boundary conditions while the equations in the DC limit are exactly the far region

equations. In the subsection 4.2 we show the near far matching calculation which produces

the same DC result for both this explicit breaking case and the massive gauge field case.

From the near far matching analysis it is natural to identify πT as the quantum critical

conductivity σE in (2.29) and (2.30) in this ω
r0
� m2 limit, and the value of σE strongly

depends on the value of ω
r0m2 . We will explain at the end of the next subsection and also in

subsection 4.2 that the discrepancy between this σE = πT and the σE in the case without

axial charge dissipations (A.2) in [20] comes from the noncommutative nature of the two

limits ω → 0 and τ5 →∞.

From the formula (2.38) for the DC longitudinal magnetoconductivity, we can see that

the negative magnetoresistivity has a universal B2 behaviour even in the large B limit

(quantum regime). In the regime where the axial symmetry breaking is small this can

be understood from the B dependent behavior of the charge relaxation time τ5 such that

τ5/χ5 in (2.30) does not depend on B which results in the universal B2 behavior in (2.37).

Our numerical results obtained from the AC conductivity with ω → 0 also match quite

well with the formulae (2.38) as can be seen in figure 3.

2.2.2 Calculating χ5 and τ5 independently

With the analytic result (2.38) for the DC magnetoconductivity, we cannot identify τ5

and χ5 because there is not enough information in this formula. Thus we will calculate

the static susceptibility χ5 and the charge relaxation time τ5 independently and substitute

them into (2.30) to be compared with the analytic result (2.38).

The static susceptibility χ5 = limω→0〈J tAJ tA〉 can be calculated from perturba-

tions (2.31) while setting E = 0, and the boundary conditions are now at, vz being regular

at the horizon and vz being sourceless at the boundary, the latter of which can be fixed

from gauge transformations. We need to solve the following equation

a′′t +
3

r
a′t −

1

r2f

(
2q2φ2 +

(8Bα)2

r4

)
at = 0 , (2.39)

and this equation can only be solved numerically. The result is shown in figure 4. Note that

different from the DC conductivity which can be totally determined by the near horizon

data, the static susceptibility cannot be fully traced to horizon data which is due to the

fact that U(1)A is no longer an exact symmetry in this explicit breaking model.

The next step is to calculate τ5 independently. This can be done by analyzing the

quasinormal modes at k = 0 on top of the µ = µ5 = 0 background with no source for
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2 (blue). Right: χ5 as a function of M for 8Bα/(π2T 2) = 5 (black), 2 (red), 0.1 (blue).

the electric field. We will solve the (vz, at, φ2) in (2.21)–(2.23) in the complex frequency

plane with infalling near horizon boundary conditions for at, vz, φ2: (2.27) with c0 restored

in φ2. As stated above there will be two linearly independent solutions for c0 = 0 with

boundary values
(
v

(0)I
z , a

(0)I
t , qMcI

)
and

(
v

(0)II
z , a

(0)II
t , qMcII

)
, which are ω dependent.

The residual gauge symmetry will give the third solution of boundary value (0,−iωΛ, qMΛ)

with radially independent Λ, and this represents the degree of freedom due to c0. We can

define the matrix for boundary values as

Mbnd =

 v
(0)I
z a

(0)I
t qMcI

v
(0)II
z a

(0)II
t qMcII

0 −iωΛ qMΛ

 . (2.40)
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Following [46], the QNM frequency is given by the zeros of the determinant of the fieled

values at the boundary, i.e. |Mbnd(−iωI)| = 0. We define the axial charge dissipation time τ5

as τ5 = 1/ωI . This is consistent with the hydrodynamic modes following the hydrodynamic

equation ∂µJ
µ
V = 0 and ∂µJ

µ
A = − 1

τ5
J0
A [35] although for small τ5T these equations may

not apply anymore given that other non-hydrodynamic QNMs will dominate.

The final numerical plot on τ5 is shown in figure 5. One can see that τ5T increases

when we increase the magnetic field or decrease the value of the source that explicitly

breaks U(1)A. When τ5T � 1 hydrodynamics applies13 and we are expecting a Drude peak

behaviour [20] (i.e. coherent metal behaviour) and this is exactly what we found in the small

frequency regime of the AC conductivity. When τ5T < 1, the hydrodynamic description

breaks down (incoherent metal behaviour) and the contribution from this hydrodynamic

QNM will not be dominant [50]. Consequently there is no Drude peak in this regime in

the AC conductivity. Moreover the standard Boltzmann theory which is based on the the

quasiparticle picture does not apply for the small τ5 case. Here we want to emphasize that

even when the axial symmetry is strongly broken we still have negative magnetoresistivity

as we have shown in the previous subsection. We note that recently in a weak coupling

context in [51] it was pointed out that the ionic scattering can produce universal positive

magnetoconductivity (or negative magnetoresistivity) with B2 behaviour for a generic 3D

metal in presence of parallel electric and magnetic fields.

2.2.3 Scaling behaviours of χ5 and τ5 on B and M

We will analyse the scaling behaviour of χ5 and τ5 with B and M in this subsection and

we will show that in the hydrodynamic limit the hydrodynamic formula reproduces the

dependence of the DC conductivity on B. First, note that the formula

σDC = σE +
τ5

χ5
(8Bα)2 (2.41)

13In this case in principle τ5 could be determined by memory matrix formalism as the three dimensional

case [49]. We leave this interesting question for future investigation.
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Figure 6. Scaling behaviour of static susceptibility χ5 and relaxation time τ5. Here the prime
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while blue solid line is for 8Bα
π2T 2 = 0.1.

for the DC conductivity is only applicable in the hydrodynamic limit B/T 2 � 1 and

τ5T � 1 which means M/T � 1. However, in the following, we will show the scaling

behaviour of χ5 and τ5 on B for a large range of B, in which this formula still coincides

with the holographic DC result. This also happen in the case without any axial charge

dissipation [20].

Figure 6 shows that when B is large (fixing M , T ), both χ5 and τ5 are linear in B, while

when M/T is small (fixing T , B), χ5 is a constant and τ5 (or Γ5 = 1/τ5) is proportional to

M−2 (or M2). Figure 7 shows that when M/T is small, τ5/χ5 does not dependent on B

in the large B regime. From these figures we can see that the formula (2.41) is valid even

for large magnetic field in the regime of small for small M/T . When τ5T � 1, we have

σE = πT and τ5/χ5 = 21.6/(π4T 3q2M2). At small M , τ5/χ5 is proportional to M−2.

Now we explain why σE that we observe here is different from the one in the case

without any axial charge dissipation in [20]. Note that if we take the limit τ5 → ∞ (by

M/T → 0) in the DC conductivity (2.37), we can see that the quantum critical conductivity

σE = πT in this limit and we cannot see the effect from the anomaly and the magnetic

field as in the case without axial charge dissipation [20], where σE drops with B at small

B and approaches zero at large B (see (A.2)). This seeming discrepancy comes from the

non-commutative nature of the two limits of ω → 0 and τ5 →∞. In the case without axial

charge dissipation, the limit of τ5 → ∞ was taken first while in our formula for the DC

conductivity with axial charge dissipations, the limit of ω → 0 was taken first and some
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dashed line is the constant coefficient 21.6 in eq. (2.38). This is consistent with the fact that our

formula eq. (2.41) is only valid when τ5T � 1.

terms in σE disappear in this limit. This means that σE in the formula in [20] can only be

seen in the limit 1/τ5 � ω → 0.14

2.3 The anomalous transport coefficients

Another interesting transport property for the explicit axial symmetry breaking case is

that we can still observe a similar anomalous transport as the chiral magnetic effect as

in the normal chiral anomalous systems. To show the anomalous transport in this case,

we should consider perturbations of the system at ω = 0 and small k and use the Kubo

formula as in normal chiral anomalous systems. We will consider the chiral magnetic

conductivity J = σBB, the chiral separation conductivity J5 = σCSEB and the axial

magnetic conductivity J5 = σ55B5, where B5 is an axial magnetic field.

We consider the transverse fluctuations ax, ay, vx, vy with k along the z direction and

their equations can be found in the appendix A.3.4. It is convenient to introduce a± =

ax ± iay, v± = vx ± ivy. For the µ = µ5 = 0 case Vt = Vz = At = Az = 0, it is easy to find

that σB = σ55 = σCSE = 0.

For the case with nontrivial axial charge density (i.e. µ = 0, µ5 6= 0) we have

v′′± +

(
3

r
+
f ′

f

)
v′± − k2 v±

r4f
± 8kα

r3f
A′tv± = 0 ,

a′′± +

(
3

r
+
f ′

f

)
a′± +

(
− k2

r2
− 2q2φ2

)
a±
r2f
± 8kα

r3f
A′ta± = 0 . (2.42)

Since the vector sector and axial sector decouple from each other, σCSE = 0.

14A similar phenomenon was observed in the momentum dissipation case. For four dimensional Reissner

Nordstrom black hole solution without momentum dissipation, σE behaves nontrivial at low temperature

which can be found in [52]. However, after introducing momentum dissipation through different mecha-

nisms [40, 53, 54] σE is constant. The reason should be the same as our case: it is exactly due to the non

commutativity between two different limits τm →∞ and ω → 0.
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Up to order k, the asymptotic series at conformal infinity is v± = v0 + v1
r2

+ . . . and

a± = a0 + a1
r2

ln r + a2
r2

+ . . . with a1 = −a0q
2λ2. The solution for v± is

v± = c0 ± 8αc0

(∫ ∞
r

dx
At
x3f

)
k +O(k2) . (2.43)

Note that ∓iGxy + Gxx = G± and σB = limk→0
Gxy(ω=0)

ik = limk→0
G+−G−

2k . Thus

σB = 8αµ5. We note that the exactly conserved (consistent) current that is defined via the

functional variation of the on-shell action with respect to the gauge potential has an addi-

tional contribution from the Chern-Simons part of the action JµCS = 4αεµνρλAνFρλ. This

part is easy to calculate since it is completely determined by the boundary values of the

fields and adds −8αµ5 to the chiral magnetic conductivity. Therefore we find σB = 8αµ5

for the current without the contribution of the Chern-Simons term (covariant current)

and σB(con) = 0 for the exactly conserved current. This is in line with the expectations

from recent arguments [18] that exactly conserved currents cannot have a non-vanishing

expectation value in equilibrium.15

Similarly σ55 = limk→0
Ga+−Ga−

2k with Ga± the two point correlator for axial gauge field

a±. We can expand a± = a
(0)
± + ka

(1)
± + k2a

(2)
± + . . . with

a
(0)
±
′′

+

(
3

r
+
f ′

f

)
a

(0)
±
′
− 2q2φ2a

(0)
±
r2f

= 0 ,

a
(1)
±
′′

+

(
3

r
+
f ′

f

)
a

(1)
±
′
− 2q2φ2a

(1)
±
r2f

= ∓ 8α

r3f
A′ta

(0)
± . (2.44)

Since one can rescale a
(1)
± → αµ5ã

(1)
± , we conclude that σ55 is proportional to αµ5. The

exact result can only be obtained numerically, which is shown in the left plot of figure 8.

We note that in the limit of large mass M/µ5, σ55 approaches 8
3αµ5. Also note that this

behaviour should not depend on B for fixing 8Bα/π2T 2. This is the same universal value

that was observed in anomalous holographic superconductors in [36, 37, 55] in the T → 0

limit. We also note that for low temperatures we end up in the M → 0 limit in the

superconducting phase. Therefore the blue line in figure 8 varies very little. In order to

interpret this result we again add the Chern-Simons contribution to the current in order

to obtain the (consistent) current that couples axial gauge field Aµ. This time the Chern-

Simons current is Jµ5,CS = 4α
3 ε

µνρλAνFρλ. The factor 1/3 can be understood by noting that

this comes from the triangle anomaly with three equal current on the vertices 〈J5J5J5〉
which implies a symmetry factor of 1/3 compared to the triangle with one axial and two

vector like currents. The Chern-Simons term contributes now −8α
3 µ5. This means that in

the large mass limit M → ∞ in which the axial symmetry is maximally broken the total

axial current vanishes! This seems a very intuitive result.

Finally we consider the case µ5 = 0, µ 6= 0. For simplicity we will discuss the chiral

separation conductivity in the linear response approximation, i.e. with vanishing back-

ground magnetic field. When B = 0, we have a simple solution with non vanishing fields

15For a detailed discussion of covariant vs. consistent definition of currents in relation to anomalous

transport see [17].
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Figure 8. Left plot: σ55 as a function of the source M for 8Bα/π2T 2 = 0.1, α = 1, T/µ5 = 0.05

(blue), 0.075 (red), 0.1 (black). Note that Tc/µ5 ' 0.765 for this case. Dashed line σ55/(αµ5) = 8/3.

Right plot: σCSE as a function of M/T for B = 0 and µ5 = 0 while µ 6= 0. When M → 0, we have

σCSE = 8αµ. For large M , σCSE → 0.

Vt = µ
(

1− r20
r2

)
and φ as the same as (2.18). In this case σB = σ55 = 0 while nonzero

σCSE which can be found in the right plot of figure 8. Let us make a comment on the

behaviour of the chiral separation conductivity. In this case there is no contribution due

to the Chern-Simons term to the current since we only switch on a chemical potential for

the conserved vector like symmetry µ 6= 0. We find that also in this case the axial current

induced by a magnetic field vanishes in the limit of maximal axial symmetry breaking.

Since in this case there is no Chern-Simons current also the covariant current vanishes.

The important conclusion of this analysis is that in the limit of maximal axial symmetry

breaking via the mass parameter M the expectation value of the axial current J5 vanishes

for both the chiral separation effect and the axial magnetic effect, but only if one uses

the consistent definition of the currents. Since a vanishing axial current for maximal axial

symmetry breaking seems a physically plausible result we take this as an argument in

support of using the consistent definition of currents.

3 Holographic massive U(1)A × U(1)V model

In this section we will concentrate on the massive U(1)A model and consider the presence

of two U(1) gauge fields in the bulk. Both fields are coupled via a Chern-Simons term as in

the previous model. In order to implement (axial) charge dissipation we consider a constant

mass term for one of the U(1), which we refer to as the axial U(1)A. This is achieved in a

gauge invariant manner via the Stückelberg mechanism [34, 35]. The action reads

S =

∫
d5x
√
−g
(

1

2κ2

(
R+

12

L2

)
− 1

4
F 2 − 1

4
F2 − m2

2
(Aµ − ∂µθ)(Aµ − ∂µθ)

+
α

3
εµαβγδ(Aµ − ∂µθ) (FαβFγδ + 3FαβFγδ)

)
, (3.1)

where F = dA and F = dV . The Stückelberg field and the gauge field Aµ transform as

θ → θ+λ,Aµ → Aµ+∂µλ, leaving the mass term invariant. The Stückelberg field it is not

charged under the U(1)V .
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As in the previous section we will work in the probe limit with Schwartzschild AdS

background. The equations of motion are

∇µFµν −m2(Aν − ∂νθ) + αεναβγρ(FαβFγρ + FαβFγρ) = 0 , (3.2)

∇νFνµ + 2αεµαβγρFαβFγρ = 0 , (3.3)

∇µ (Aµ − ∂µθ) = 0 . (3.4)

The mass term affects the asymptotic behaviour of the axial gauge field Aµ. The asymptotic

expansion of the different fields reads

Aµ ' Aµ(0)r
∆ + . . .+ Ãµ(0)r

−2−∆ + . . . , (3.5)

Vµ ' Vµ(0) + . . .+ Ṽµ(0)r
−2 + . . . , (3.6)

θ ' θ(0) + . . .+ θ̃(0)r
−4 + . . . , (3.7)

with ∆ the conformal dimension of the source for dual axial current operator ∆ = −1 +√
m2 + 1. Aµ(0), Vµ(0), θ(0) are the coefficients of the non-normalisable modes and Ãµ(0),

Ṽµ(0), θ̃(0) are the coefficients of the normalisable modes. As one can see the presence of the

mass changes the dimension of the operator dual to the axial U(1)A: [Jµ5 ] = 3 + ∆. This

implies that the dual axial charge is not conserved since in a conformal theory a conserved

current must saturate the unitarity bound. We refer to ∆ as the anomalous dimension of

the axial current. Moreover the anomalous dimension has a bound, given by the condition

∆ < 1. This is obtained by requiring the dual axial operator to be irrelevant in the UV.

It is necessary to renormalise the theory in order to obtain finite observables [56]. The

amount of divergent counterterms needed depends on the precise value of the mass and

diverges as one reaches the marginal case ∆ = 1. For this reason we will only consider

masses such that ∆ < 1/3, which keep this amount minimal. For these values of the mass

the boundary term containing the counter terms reads

Sct =

∫
∂
d4x
√
−γ
(

∆

2
BµB

µ − 1

4(∆ + 2)
(∂µB

µ)2 +
1

8∆
F 2 +

1

8
log r2F2

)
, (3.8)

with Bµ = Aµ−∂µθ.16 A comment is in order regarding the Ward identities of the currents.

The vector current is conserved and therefore the divergence vanishes

∂µJ
µ = 0 . (3.9)

With such a choice one could expect the divergence of the axial current to be explicitly

proportional to α (F ∧ F + F ∧ F ). However this intuition fails in the massive case. The

axial symmetry is broken by the dynamical internal SU(N) degrees of freedom. This implies

that the “current” operator is to be considered as a non-conserved current which, therefore,

lacks any constraint given by the symmetry. This is nicely seen in this model by computing

the expectation for the divergence of this current. With the renormalised action and after

using the asymptotic expansion one gets

∂µJ
µ = 0 , ∂µJ

µ
5 = (2 + 2∆)∂µÃ

µ
(0) , (3.10)

with no explicit constraint for the axial current.

16In addition to the divergent terms we have implicitly chosen a scheme that respects the axial symmetry

by including the finite term −α
3
∂µθε

µαβγδ3FαβFγδ in (3.1).
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3.1 Magnetoconductivity and relaxation time

In this section we compute the electric DC conductivity, the static susceptibility and the

axial charge diffusion time in presence of a background B field. As background we switch

on a spatial component of the vector field Vx = By which trivially fulfils the background

equations of motion and generates a constant magnetic field aligned to the z direction.

To compute the appropriated quantities we switch on perturbations on top of this back-

ground with finite frequency and momentum aligned to the B field δθ = η(r)e−iωt+ikz,

δAµ = aµ(r)e−iωt+ikz and δVµ = vµ(r)e−iωt+ikz. For our purposes we can just focus in the

sector that contains az , at , vz , vt , η which is decoupled from the other components in our

background. The explicit form of the equations can be found in appendix A.4. Here we

list the k = 0 sector,

a′′t +
3

r
a′t −

m2

r2f
at +

8αB

r3
v′z +

iωm2

r2f
η = 0 , (3.11)

v′′z +

(
f ′

f
+

3

r

)
v′z +

ω2

r4f2
vz +

8αB

fr3
a′t = 0 , (3.12)

−im2r2fη′ + ω

(
a′t +

8αB

r3
vz

)
= 0 . (3.13)

In order to obtain two-point functions and quasinormal modes numerically17 we build

the numerical, matrix valued, bulk to boundary propagator F with the appropriated nor-

malisation such that r−∆ai(r)

vi(r)

η(r)

 = F(r)

aj(0)

vj(0)

η(0)

 , F(Λ) = I , (3.14)

where Λ is the cutoff radius. This can be obtained imposing infalling boundary condi-

tions and a set of orthonormal values of the amplitudes at the horizon. With the usual

holographic prescription different correlators can be written as a linear combination of

derivatives of F(r) and quasinormal modes can be obtained from the zeros of the de-

terminant of F−1(r). Concretely for the electric DC conductivity and the axial static

susceptibility we find

χ5 = lim
Λ→∞

Λ3+∆F′at,at(Λ)

∣∣∣∣
ω=k=0

, (3.15)

σDC = lim
Λ→∞

lim
ω→0

Λ3 1

iω

(
F′vz ,vz(Λ) + ω2Fvz ,vz(Λ) log(Λ)

) ∣∣∣∣
k=0

, (3.16)

where subscripts at, vz refer to the appropriated entry of the matrix.

3.1.1 Electric DC conductivity

We compute the negative magnetoresistivity in this model and compare it to the results

in the previous model. Note that the anomaly term proportional to the external electric

and magnetic fields cannot be implemented in the hydrodynamic expansion in this model.

17We refer the reader to [35] for a thorough explanation on how to numerically compute different quantities

within this model.
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Figure 9. Dots show numerical result for the DC conductivity obtained by setting ω/T = 10−5 for

the AC conductivity. Solid lines show the best fit for the data. Left: fixed m = 0.5 and the best fit

is σ/T − π = 0.0001 + 0.9994π(8Bα/π2T 2)2/m2. Right: fixed 8Bα/(π2T 2) = 4 and the best fit is

σ/T −π = 0.0001 + 0.9994π(8Bα/π2T 2)2/m2. The fitting formulae exactly reproduces (3.22) from

analytical calculations.

This can easily seen from the conservation law since ∂µJ
µ
5 = 1

τ5
J0

5 + cE ·B , does no longer

hold due to the anomalous dimension of the axial current. This ultimately implies that

one cannot derive an equation analogous to (2.29) in this situation.

As we will show now the magnetic field dependence of the DC conductivity in this

model still implies positive magnetoconductivity. We first obtain analytic formula for DC

conductivity by means of the near horizon analysis [47]. The procedure is the same as the

one in previous subsection 2.2.1. Consider fluctuations

δVµ = (vt(r), 0, 0,−Et+ vz(r), 0) , δAµ = (at(r), 0, 0, az(r), ar(r)) , δθ = η , (3.17)

we need to consider

a′′t +
3

r
a′t −

m2

r2f
at +

8αB

r3
v′z = 0 , (3.18)

v′′z +

(
f ′

f
+

3

r

)
v′z +

8αB

r3f
a′t = 0 . (3.19)

Near conformal boundary r →∞, we have at = a
(0)
t r∆ + ã

(0)
t r−2−∆ + . . . , vz = v

(0)
z +

ṽ
(0)
z r−2 + . . . . From the equation (3.18) we have conserved quantity J = −r3fv′z − 8Bαat

with ∂rJ = 0. Thus J |r→∞ = J |r→r0 . When r → ∞, we impose the sourceless boundary

condition for at, i.e. a
(0)
t = 0. Thus the electric current which is the response of external

electric field j = J |r→∞. We are looking for the solution which is regular near horizon.

Thus we have

vz = − E

4πT
ln(r − r0) +O(r − r0) , (3.20)

at = − 4E(8Bα)

(4πT )m2r2
0

+O(r − r0) . (3.21)

Note that near horizon the subleading term in at is a free parameter which is precisely

the shooting parameter that can be used to determine the sourceless condition for at near
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Figure 10. Left panel: axial charge relaxation time as a function of magnetic field for different

values of the bulk mass m = 0.15 (Black), m = 0.25 (Red), m = 0.5 (Blue). Right panel: numerical

data (dots) and linear fit (red) for τ5 at m = 0.5 and large magnetic field. The best fit in this region

is τ5T = 0.0979 + 0.5030 8Bα
π2T 2m2 .

boundary. It follows immediately

σDC =
j

E
= πT +

πT

m2

(
8Bα

π2T 2

)2

. (3.22)

This formula shows again the key point of this work: the DC longitudinal magnetocon-

ductivity depends quadratically on the magnetic field independently of its strength when

charge relaxation is built in the models. It is remarkable that this behaviour holds in this

setup too, despite to the lack of a clear hydrodynamic prediction in terms of τ5 and χ5.

We also checked the formula numerically. Our results show perfect agreement with the

analytic formula, as shown in figure 9.

The AC conductivity in this model has been studied numerically already in [35]. Here

we note that also in that model a sum rule of the form (2.28) was found to hold.

3.1.2 Axial charge dissipation time

We compute the dissipation time for the axial charge from the gap in the imaginary part of

the lowest QNM associated to this symmetry. As shown in [35] and in [57] in chiral kinetic

theory a diffusive mode for the vector charge and a gapped dissipative mode for the axial

charge. It is this gap that we identify with the inverse of the axial relaxation time.

We compute the QNMs at zero momentum numerically using the numerical techniques

explained in [46]. The QNMs are obtained from the zeros in the determinant of the in-

verse bulk to boundary propagator defined in the previous subsection (3.14). The explicit

equations are shown in appendix A.4. In figure 10 we show our results for the relaxation

time. As shown in [35] the relaxation time is found to be inversely proportional to the

bulk photon mass. Moreover the behaviour of this relaxation with increasing magnetic

field shows a transition to a linear regime for big enough magnetic fields, see figure 10 for

fit analysis. This is analogous to what was found in the explicit U(1)A breaking model.
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3.1.3 Static axial susceptibility

Although (2.29) does not straightforwardly apply to this model too it is still interesting to

compute the axial susceptibility and its dependence with the magnetic field.

To obtain the analytic result we set E = 0, then we have

a′′t +
3

r
a′t −

m2

r2f
at +

(8αB)2

r6f
at = 0 . (3.23)

Near horizon we impose at(r0) = 0. The solution is

at = i

(
r0

r

)1+
√

1−β2 Γ
[
1 +

√
1− β2/2

]
Γ
[
1−
√

1 +m2/4 +
√

1− β2/4
]

Γ
[
1 +
√

1 +m2/4 +
√

1− β2/4
]×

2F1

[(
−
√

1 +m2 +
√

1− β2
)
/4,
(√

1 +m2 −
√

1− β2
)
/4, 1−

√
1− β2/2, r4/r4

0

]
− i
(
r0

r

)1−
√

1−β2

Γ[1−
√

1− β2/2]

Γ
[
1+
√

1 +m2/4−
√

1− β2/4
]

Γ
[
1−
√

1 +m2/4−
√

1− β2/4
]×

2F1

[(
−
√

1 +m2 +
√

1− β2
)
/4,
(√

1 +m2 +
√

1− β2
)
/4, 1 +

√
1− β2/2, r4/r4

0

]
,

where β = 8Bα
π2T 2 . Near conformal boundary the above solution behaves as at =

a
(+)
t r−1+

√
1+m2

+ a
(−)
t r−1−

√
1+m2

, thus

χ5 = −2
√

1 +m2
a

(−)
t

a
(+)
t

= 4r2
√

1+m2

0

Γ
[
1−

√
1+m2

2

]
Γ
[

1
4

(√
1 +m2 −

√
1− β2

)]
Γ
[

1
4

(√
1 +m2 +

√
1− β2

)]
Γ
[√

1+m2

2

]
Γ
[
−1

4

(√
1 +m2 +

√
1− β2

)]
Γ
[

1
4

(
−
√

1 +m2 +
√

1− β2
)] .

Now let us study the behaviour of static axial charge susceptibility in large B limit.

When β = 8Bα
π2T 2 →∞, we have

χ5 → 4r2
√

1+m2

0

Γ
[
1−

√
1+m2

2

]
Γ
[√

1+m2

2

] (
β

4

)√1+m2

. (3.24)

We check this numerically. We compute the axial static susceptibility χ5 and its

dependence with the background magnetic field numerically by means of the the Kubo

formula

χ5 = 〈J5
t J

5
t 〉
∣∣∣∣
ω=k=0

. (3.25)

In figure 11 we show the behaviour of the static susceptibility against magnetic field.

As expected there is a transition to a fixed scaling for large magnetic field. However, as

predicted in (3.24) the exponent is now
√

1 +m2, see figure 11 for fit analysis. Our results

show indeed that the ratio τ5/χ5 is not B independent for large values of B, contrary to

what was found in the previous model.
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Figure 11. Left: static susceptibility as a function of magnetic field for different values of the

bulk mass m = 0.15 (Black), m = 0.25 (Red), m = 0.5 (Blue). Right: χ5 for m = 0.5. Red line

corresponds to linear fit and blue line to (8αB/T 2π2)
√
1+m2

as expected from (3.24).

4 Remarks: relations of two models and DC results from small ω

matching

In this section we will make some important remarks on two separate aspects: the relations

between our two holographic axial charge dissipation models and rederivation of the DC

conductivity based on radially conserved quantities from the near-far matching calculation

for AC conductivity at small frequencies.

4.1 Comparison between the two models

These two axial charge dissipation models look very different: one breaks the charge con-

servation symmetry by giving a mass to the gauge field and the other breaks this symmetry

explicitly by a scalar operator source. However, if we look closer to these two models we

will find that these two are in fact closely related. We can compare the actions or the

equations of motion of these two models. It is easy to find that in the equations of mo-

tion for perturbations (3.11)–(3.13), if we replace m2 in the massive gauge field model by

2q2φ2 and η → −φ2
qφ , we will reproduce exactly the same equations of perturbations for

the explicit breaking model (2.21)–(2.23). It explains that our DC conductivities (2.37)

and (3.22) in these two models have a universal formulae. This shows that the scalar oper-

ator in the explicit breaking model gives an effective mass to the gauge field.18 By solving

the equations of the two models, we can even see that the massive gauge field model is in

fact a special case for the explicit breaking case in which the bulk mass for the scalar is

set to zero and µ = µ5 = 0. The massless scalar is dual to a marginal operator. A source

for it does however change the scaling dimension of the axial current. An advantage of the

explicit breaking model is that we can choose the mass of the scalar field freely without

changing the the scaling dimension of the axial current.

18Similar physics happens for the momentum relaxation case: as concluded in [58] the explicit momentum

breaking by a scalar field gives graviton a mass.
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Note that in both models we can choose two kinds of gauges (or any combination of

the two): one is to choose δAr = 0 and the other is to choose δη = 0 in the massive gauge

field case or δφ2 = 0 in the explicit breaking case. For both these two gauges, we will find

that the equations for perturbations are the same with the mass of the massive gauge field

replaced by an effective mass generated by the scalar source.

Finally, though at the level of actions or equations of perturbations the two are closely

related or equivalent in some sense, there is a subtlety here that in the massive gauge

model, there is no Higgs mode, i.e. η is a real scalar while φ is a complex scalar field. This

Higgs mode does not have any effect in transport coefficients, but it may have other effects.

In particular when µ 6= 0 or µ5 6= 0 the Higgs mode will not decouple.

4.2 Near far matching calculation for the AC conductivity at low frequency

In this subsection we reproduce the DC magnetoconductivity result which was obtained

using radially conserved quantities from the near far matching calculation for both the

explicit U(1)A breaking and the massive gauge field case. As we emphasied in the previous

subsection, the equations (2.21)–(2.23) and (3.11)–(3.13) are the same if we replace m2

in the massive gauge field model by 2q2φ2 and η → −φ2
qφ . In the following we consider

eqs. (3.11)–(3.13). It is straightforward to apply to the replacement to (2.21)–(2.23).

We work in the gauge δη = 0 (or δφ2 = 0 gauge for the explicit breaking case) and in the

coordinate u =
r20
r2

for convenience. The equations for the perturbations δAt = at(u)e−iωt,

δVz = vz(u)e−iωt, and δAr = ar(u)e−iωt are

4u2
(
1− u2

) (
4αBv′z + r2

0a
′′
t + ir2

0ωa
′
r

)
−m2r2

0at = 0 , (4.1)(
−m2r4

0

(
1− u2

)
+ r2

0uω
2
)
ar − iuω

(
4αBvz + r2

0a
′
t

)
= 0 , (4.2)

4u
(
1− u2

) (
r2

0

( (
1− u2

)
v′z
)′

+ 4αBa′t

)
+ ω2vz + 16iαBuω

(
1− u2

)
ar = 0 (4.3)

with ′ the derivative in u.

The near region is defined as 1−u� 1 and the far region is defined as 1−u� ω
r0

. We

will first solve the near region and the near horizon boundary conditions for the far region

are provided by the near region solutions expanded at the matching region.

In the near region, we have the infalling boundary conditions and the solutions at

leading order are

vz ' (1− u)−iω/4r0
(
1 + . . .

)
, (4.4)

at ' (1− u)−iω/4r0
(
ωs0 + s1(1− u) + . . .

)
, (4.5)

ar ' (1− u)−iω/4r0−1
(
ωs2 + s3(1− u) + . . .

)
, (4.6)

where s0, s1, s2, s3 are constants which may depend on ω and m and using the equations

there will be only one free parameter which we denote as s2. The ‘· · · ’ above denotes

subleading terms which contribute to the same higher orders in the equations.

The following matching calculations are equivalent to defining new functions as vz =

(1−u)−iω/4r0vfz (u), at = (1−u)−iω/4r0aft (u) and ar = (1−u)−iω/4r0afr (u) and solving these

new functions with boundary conditions at = 0 at u = 0. Here we take the terminology of
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matching in order to present the results more clearly to be understood. With the near region

leading order solutions, we then expand them at leading order in ω in the matching region
ω
r0
� 1−u� 1, which can be used as near horizon boundary conditions for the far region:

vz ' 1− iω

4r0
ln(1− u) , (4.7)

at ' −4r0s2ω + (1− u)

[(
4αB

r2
0

− 2im2r2
0s2

)
+

(
iαB

r3
0

+
1

2
m2r2

0s2

)
ω

]
+ (1− u) ln(1− u)

(
4αB

r2
0

− 2im2r2
0s2

)(
−iω
4r0

)
, (4.8)

where s2 is the tuning parameter to make sure that the boundary condition at = 0 at the

boundary u = 0 is satisfied. ar is decoupled in the far region and is not important here.

To derive the far region equations, we can drop all the terms in the equations at order

o(ω) while order O(ω) terms should be kept. In the equations above, we can solve ar from

the second equation and substitute it to the first and the third equations and find that

those O(ω) order terms all become O(ω2) order terms and can be ignored in the far region.

Note that in this procedure we have secretly assumed that m2r2
0/ω � ωu/(1 − u) in the

far region as can be seen from the coefficient of ar in the second equation. With a further

constraint that the ar terms in (4.1) and (4.3) are at order o(ω), we know that the following

far region equations are only valid for m2 � ω/r0 (this condition should be substituted by

M2 � ω/r0 in explicit breaking case), i.e. ωτ5 � 1:

(
(1− u2)v′z

)′
+

4αB

r2
0

a′t = 0 , (4.9)

4u2(1− u2)

(
4αB

r2
0

v′z + a′′t

)
−m2at = 0 , (4.10)

which are the same as we are studying in the paper (2.32)–(2.33) and (3.18)–(3.19) for DC

conductivity and the first equation can be integrated to give

(1− u2)v′z +
4αB

r2
0

at = C0 , (4.11)

where C0 is an integration constant which can be decided by the near horizon analysis to be

C0 =
iω

2r0
− 16αB

r0
s2ω , (4.12)

at order O(ω).

The next step is to see which s2 can set the leading order coefficient of at at the

conformal boundary to be 0. If s2 has 1/ω dependence at the leading order, then there is

only one term (1 − u) in at at the order 1/ω due to the m2 term in the equation for at,

which cannot be canceled by other terms at the boundary. Thus s2 ∼ s20 +ωs21 · · · . Then

for small ω we can see that there is one term (1−u) in the near horizon expansion of at at

order O(1) while others are at O(ω). O(ω) and O(1) terms belong to linearly independent

solutions and at the boundary they will lead to boundary values at order O(ω) and O(1)
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separately because the far region equations do not depend on ω. To make sure that the

leading order in at is 0 at the conformal boundary, we have to impose that the O(1) order

coefficient in front of (1 − u) vanish, which gives s20 = − 2iαB
m2r40

. s21 is now the tuning

parameter to shoot the boundary value of at to 0.

From the far region solution we know that v′z(u = 0) = C0 and vz = 1+ ib1ω/m
2 where

b1 should be a constant at order O(1) in both ω and m2. Note that in v′z(0) there should

be ω2 order corrections which can only be obtained by considering the subleading order

equations in the far region. Thus the final result for the magnetoconductivity should be

σ =
2r2

0

iω

C0 + b2ω
2

1 + i b1ω
m2

(4.13)

=
r0 + 64α2B2

m2 r3
0 − ib2ω

1 + ib1
ω
m2

, (4.14)

where b2 comes from the ω2 corrections to v′z(0). With a simple estimate b2 ∼ 1/m4

for small m. This is consistent with the fact that we are working in the small ω/m2T

limit, in which the subleading order corrections compared to the leading order coefficients

in the numerator and the denominator are usually at the same order and b1 can not be

identified as related to the relaxation time τ5. Note that the terms in the numerator at

order O(ω0) is accurate and non-perturbative in m2. First we can see that when ω → 0

we reproduce the DC results: eq. (2.37) in section 2 for the U(1)A explicit breaking model

and eq. (3.22) in section 3 for the massive gauge field case. Second, it is easy to see that

when we take first ω → 0 and then m2 → 0 limit, r0 will give the value of σE . In fact

there is no good definition for σE from the holographic result because it may depend on

the value of ω/m2 and as we will explain at the end of this subsection there will also be

contributions to the DC conductivity at order σE from other quasinormal modes than the

one that we focus here.

There are several comments on this result which we list as follows.

• The calculation above is valid for m2 � ω/r0, i.e. ωτ5 � 1. If we want to go to the

opposite limit m2 � ω/r0 � 1 in this holographic framework we can still perform

this calculation except that the far region equations now are totally different. This

can be seen from the second equation (4.2): now the ω2 coefficient in front of ar is

more important. The result in this limit would recover our old result in [20], including

the different form of σE . Thus one important conclusion is that the DC calculation

in the main text based on radially conserved quantities is only consistent with the

AC result in the limit ω/r0 � m2.

• Note that here b1 does not give us the value of τ5 because this is the ωτ5 � 1 limit

while τ5 should be determined from the pole in the ω/r0 ∼ m2 limit. In this limit,

we can also solve the equations by assuming m2 = λ1ω/r0 where λ1 is an order 1

number. In this limit, there will be order O(ω) terms in the far region equations

and we should solve these equations order by order in ω, i.e. O(ω) order solutions

come from two parts: ω order corrections to the O(1) order solutions and one linearly

independent part. This is beyond the calculation in this paper and we will leave it

for future investigation.

– 29 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
7

• The hydrodynamic formulas only capture the physics of the one quasinormal mode

that we focus on, which has τ5T → ∞. However, the DC holographic result has

contributions from all quasinormal modes. This means there will be an order 1/τ5T

difference in the holographic and hydrodynamic results for the DC conductivity.

• Finally note that these considerations go through with little change for the explicit

breaking case. The result is given by (4.14) upon substituting m2 = 2q2φ2
0.

5 Conclusion and discussion

We have considered two holographic models to encode axial charge dissipation in the probe

limit. They are dual to four dimensional strongly coupled anomalous systems in presence

of background magnetic field. In our first holographic model, the axial charge dissipa-

tion is realised by a charged scalar non-normalisable mode. At weak coupling this cor-

responds to introducing a fermionic mass term. In our second holographic model, the so

called Stückelberg massive U(1)A model, the U(1)A is broken by giving the axial current

an anomalous dimension. As we have argued both models are closely related. Indeed

if one choses the scalar mass ms = 0 and µ = µ5 = 0 the relevant equations coincide in

both models.

We found that in both these two models, positive magnetoconductivity is exactly

quadratic in in the magnetic field strength. Moreover this remains true even in the case of

small relaxation times when the axial charge can not be considered to be approximately

conserved.

This is consistent with the recent experiments [29–32]. A recent weakly coupled theo-

retical proposal for ionic scattering [51] also found exact quadratic scaling of the magneto-

conductivity with magnetic field. We note that our results, beyond being valid at strong

coupling, are also different in that we consider high temperature and low chemical poten-

tials. In particular our results suggest that at weak coupling but high temperature there

should still be positive magnetoconductivity quadratic in B even when the fermi energy

does not intersect any Landau level but lies in the gap region. Our models should also be

of relevance for application to non-central heavy ion collisions quark gluon plasma where

strong magnetic fields are present.

We have introduced the axial charge relaxation by switching on constant sources.

Anther interesting way to induce it should be via a random source that averages to zero,

i.e. introducing disorder. We leave this possibility for future investigation.
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Figure 12. The real part and the imaginary part of σ in the holographic model without axial

charge dissipation [20].

A Quantum critical conductivity and equations

In this appendix we will list the details of the previous holographic result on the conduc-

tivity for the case without axial charge dissipation [20] and the equations mentioned in the

main text for reference.

A.1 The quantum critical conductivity σE in the holographic model without

axial charge dissipation

In this subsection, we recall the result of the quantum critical conductivity σE and its plot

for reference [20]. From holography in the U(1)V × U(1)A model with a background B

field, we have

σ = σE +
i

ω

(8Bα)2

∂ρ5/∂µ5
(A.1)

where

σE =
π2T

8
β2 sec

(π
2

√
1− β2

) Γ

[
3−
√

1−β2

4

]
Γ

[
3+
√

1−β2

4

]
Γ

[
5−
√

1−β2

4

]
Γ

[
5+
√

1−β2

4

] , (A.2)

∂ρ5

∂µ5
=
π2T 2

4
β2

Γ

[
3−
√

1−β2

4

]
Γ

[
3+
√

1−β2

4

]
Γ

[
5−
√

1−β2

4

]
Γ

[
5+
√

1−β2

4

] , (A.3)

with β = 8Bα
π2T 2 . The plot for the real part (σE) and the imaginary part of σ can be found

in figure 12. For large B, we have σE → 0.
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A.2 Equations for the background in the explicit U(1)A breaking model

Substituting the ansatz (2.12) into (2.3)–(2.5) we find the the following background equa-

tions of motion

A′′t +
3

r
A′t −

2q2φ2

r2f
At +

8Bα

r3
V ′z = 0 , (A.4)

A′′z +

(
3

r
+
f ′

f

)
A′z −

2q2φ2

r2f
Az +

8Bα

r3f
V ′t = 0 , (A.5)

V ′′t +
3

r
V ′t +

8Bα

r3
A′z = 0 , (A.6)

V ′′z +

(
3

r
+
f ′

f

)
V ′z +

8Bα

r3f
A′t = 0 , (A.7)

φ′′ +

(
5

r
+
f ′

f

)
φ′ +

(
q2A2

t

r4f2
− q2A2

z

r4f
− m2

r2f

)
φ = 0 . (A.8)

We focus on the solution which is regular on the black hole event horizon. Thus

At(r = r0) = 0. We set Vt(r = r0) = 0. Equations (A.6) and (A.7) can be simplified as

(r3V ′t + 8BαAz)
′ = 0 and (r3fV ′z + 8BαAt)

′ = 0. Thus we can integrate the two equations

to get r3V ′t + 8BαAz = c0 and r3fV ′z + 8BαAt = 0. Eq. (A.4) can be written as

A′′t +
3

r
A′t −

1

r2f

(
2q2φ2 +

(8Bα)2

r4

)
At = 0 . (A.9)

Note that Vz can be totally fixed by adding normalisable boundary condition.

A.3 Equations for the fluctuations in the explicit U(1)A breaking model

A.3.1 Equations of motion for longitudinal fluctuations at zero momentum

We have the following equations of motion for the longitunial fluctuations at, az, vt, vz, φ1, φ2

at zero momentum on the top of the background (2.12)

a′′t +
3

r
a′t −

2q2φ2

r2f
at +

8Bα

r3
v′z −

2qφ

r2f

(
2qAtφ1 + iωφ2

)
= 0 ,

a′′z +

(
3

r
+
f ′

f

)
a′z +

(
ω2 − 2q2r2fφ2

) az
r4f2

+
8Bα

r3f
v′t −

4q2Azφ

r2f
φ1 = 0 ,

ωa′t +
8Bαω

r3
vz + 2iqr2f

(
− φ2φ

′ + φφ′2
)

= 0 ,

v′′z +

(
3

r
+
f ′

f

)
v′z +

ω2

r4f2
vz +

8Bα

r3f
a′t = 0 ,

v′t +
8Bα

r3
az = 0 ,

φ′′1 +

(
5

r
+
f ′

f

)
φ′1 +

(
ω2 + q2A2

t −m2r2f − q2fA2
z

) φ1

r4f2

+
1

r4f2

(
2q2φ(Atat − azfAz) + 2iqωφ2At

)
= 0 ,

φ′′2 +

(
5

r
+
f ′

f

)
φ′2 +

(
ω2 + q2A2

t −m2r2f − q2fA2
z

) φ2

r4f2
− iqω

r4f2

(
φat + 2Atφ1

)
= 0 .
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A.3.2 Equations of motion for transverse fluctuations at zero momentum

The equations of motion for the transverse fluctuations ax, ay, vx, vy at zero momentum on

the top of background (2.12) are the follows

a′′x +

(
3

r
+
f ′

f

)
a′x +

(
ω2

r2f
− 2q2φ2

)
ax
r2f

+
8iωα

r3f

(
V ′zvy +A′zay

)
= 0 , (A.10)

a′′y +

(
3

r
+
f ′

f

)
a′y +

(
ω2

r2f
− 2q2φ2

)
ay
r2f
− 8iωα

r3f

(
V ′zvx +A′zax

)
= 0 (A.11)

v′′x +

(
3

r
+
f ′

f

)
v′x +

ω2

r4f2
vx +

8iωα

r3f

(
V ′zay +A′zvy

)
= 0 , (A.12)

v′′y +

(
3

r
+
f ′

f

)
v′y +

ω2

r4f2
vy −

8iωα

r3f

(
V ′zax +A′zvx

)
= 0 . (A.13)

After defining a± = ax ± iay, v± = vx ± ivy, we have

a′′± +

(
3

r
+
f ′

f

)
a′± +

(
ω2

r2f
− 2q2φ2

)
a±
r2f
± 8ωα

r3f

(
V ′zv± +A′za±

)
= 0 , (A.14)

v′′± +

(
3

r
+
f ′

f

)
v′± +

ω2

r4f2
v± ±

8ωα

r3f

(
V ′za± +A′zv±

)
= 0 . (A.15)

For zero density case Vt = At = Vz = Az = 0, by repeating the calculation in the

appendix of [20], we have σxx = σyy = πT and the Hall conductivity σxy = 0. When

At = Vz = 0, i.e. with µ5 = 0 and µ 6= 0, we have σxx = σyy = πT and σxy = ρ−ρh
B which

is the same as the case without axial charge dissipation [20]. We do not have analytical

solutions for other cases.

A.3.3 Equations for DC conductivity calculation

We have seven ODEs for the fields around the background (2.12) in which we assume the

most general case with background µ and µ5. The equations are the following

a′′t +
3

r
a′t −

2q2φ2

r2f
at +

8Bα

r3
v′z −

4q2φAt
r2f

φ1 = 0 ,

a′′z +

(
3

r
+
f ′

f

)
a′z −

2q2φ2

r2f
az +

8Bα

r3f
v′t −

4q2Azφ

r2f
φ1 = 0 ,

−8BαE

r5f
− 2q2φ2ar + 2q

(
− φ2φ

′ + φφ′2
)

= 0 ,

v′′t +
3

r
v′t +

8Bα

r3
a′z = 0 ,

v′′z +

(
3

r
+
f ′

f

)
v′z +

8Bα

r3f
a′t = 0 ,

φ′′1 +

(
5

r
+
f ′

f

)
φ′1 +

(
q2A2

t −m2r2f − q2fA2
z

) φ1

r4f2
+

2q2φ

r4f2

(
Atat − azfAz

)
= 0 ,

φ′′2 +

(
5

r
+
f ′

f

)
φ′2+

(
q2A2

t −m2r2f − q2fA2
z

) φ2

r4f2
−
(

5

r
+
f ′

f

)
qarφ− qφa′r − 2qarφ

′ = 0 .
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A.3.4 Equations for transverse fluctuations at finite ω and k

We consider transverse fluctuations ax, ay, vx, vy with finite frequency and momentum on

top of (2.12) and the equations are

a′′x+

(
3

r
+
f ′

f

)
a′x+

(
ω2

r2f
− k

2

r2
−2q2φ2

)
ax
r2f

+
8iωα

r3f

(
V ′zvy+A′zay

)
+

8ikα

r3f

(
A′tay+V ′t vy

)
= 0,

a′′y+

(
3

r
+
f ′

f

)
a′y+

(
ω2

r2f
− k

2

r2
−2q2φ2

)
ay
r2f
− 8iωα

r3f

(
V ′zvx+A′zax

)
− 8ikα

r3f

(
A′tax+V ′t vx

)
= 0,

v′′x+

(
3

r
+
f ′

f

)
v′x+

(
ω2

r2f
− k

2

r2

)
vx
r2f

+
8iωα

r3f

(
V ′zay+A′zvy

)
+

8ikα

r3f

(
A′tvy+V ′t ay

)
= 0,

v′′y+

(
3

r
+
f ′

f

)
v′y+

(
ω2

r2f
− k

2

r2

)
vy
r2f
− 8iωα

r3f

(
V ′zax+A′zvx

)
− 8ikα

r3f

(
A′tvx+V ′t ax

)
= 0.

After defining a± = ax ± iay, v± = vx ± ivy, we have

a′′±+

(
3

r
+
f ′

f

)
a′±+

(
ω2

r2f
− k

2

r2
−2q2φ2

)
a±
r2f
± 8ωα

r3f

(
V ′zv±+A′za±

)
± 8kα

r3f

(
A′ta±+V ′t v±

)
= 0 ,

v′′±+

(
3

r
+
f ′

f

)
v′±+

(
ω2

r2f
− k

2

r2

)
v±
r2f
± 8ωα

r3f

(
V ′za±+A′zv±

)
± 8kα

r3f

(
A′tv±+V ′t a±

)
= 0 .

A.4 Equations of fluctuations for massive U(1)A

The linearised equations of motion for the fluctuations at general ω and k in the massive

model read

a′′t +
3

r
a′t −

(
k2

fr4
+
m2

r2f

)
at −

ωk

fr4
az +

8αB

r3
v′z +

iωm2

r2f
η = 0 , (A.16)

v′′t +
3

r
v′t −

k2

fr4
vt −

ωk

fr4
vz +

8αB

r3
a′z = 0 (A.17)

a′′z +

(
f ′

f
+

3

r

)
a′z +

(
ω2

r4f2
− m2

r2f

)
az +

ωk

r4f2
at +

8αB

fr3
v′t −

ikm2

r2f
η = 0 , (A.18)

v′′z +

(
f ′

f
+

3

r

)
v′z +

ω2

r4f2
vz +

ωk

r4f2
vt +

8αB

fr3
a′t = 0 , (A.19)

η′′ +

(
5

r
+
f ′

f

)
η′ +

(
ω2

r4f2
− k2

r2f

)
η +

iω

r4f2
at +

ik

fr3
az = 0 , (A.20)

with two constraint equations

ωa′t + kfa′z +
8Bα

r3
(ωvz + kvt)− im2r2fη′ = 0 , (A.21)

ωv′t + kfv′z +
8Bα

r3
(ωaz + kat) = 0 . (A.22)
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