21 research outputs found

    Optimizing the concrete strength of lightweight concrete containing nano palm oil fuel ash and palm oil clinker using response surface method

    Get PDF
    Lightweight aggregate concrete (LWAC) has gradually gained popularity as a significant material in the concrete industry worldwide. One of the important lightweight aggregates is palm oil clinker (POC). Moreover, palm oil fuel ash (POFA) can be used as a partial cement replacement in concrete. This paper presents a study in which POFA of Nano-particle size was used to enhance the lower performance of LWAC made with POC aggregate. The Nano-POFA (NPOFA) was used as cement replacement of 0%, 10%, 20%, and 30% and POC aggregate was used as coarse aggregate at replacement levels of 0%, 50%, and 100%. Flexural and split tensile strengths and ultrasonic pulse velocity (UPV) were investigated for different concrete mixtures. For optimizing the parameters of the mix design, the response surface method (RSM) was adopted, and within it, a central composite design (CCD) approach was used. The results show that the interaction of POC and NPOFA affects the responses (UPV, flexural and tensile strengths). However, the POC tends to decrease all the responses. Whereas, the NPOFA tends to increase it especially at later ages. The highest UPV, flexural and split tensile strengths were observed for mixture (M7) that were 4375 m/s, 8.53 MPa, and 5.38 MPa, respectively. It can be concluded that the optimization method by RSM is an active way to enhance the mix design of LWAC

    Exploring engineering properties of waste tire rubber for construction applications - a review of recent advances

    Get PDF
    A sizeable amount of tire rubber waste is generated due to the increasing number of road automobile users all over the world. The accumulation of this waste in the open area poses environmental threats and therefore requires suitable treatments. The use of waste obtained from tire rubber as a construction material could contribute to a circular economy, while at the same time be an eco-friendly method of minimizing the depletion of raw materials used for the development of building materials. This study aims to show the impact of crumb rubber (CR) on the properties of concrete. This review covers the environmental consideration of fresh and hardened properties of composites developed using waste tires. The results show that the plastic nature of CR with suitable admixture led to increasing slump value and consequently enhanced the CR concrete workability

    Exploring engineering properties of waste tire rubber for construction applications

    Get PDF
    A sizeable amount of tire rubber waste is generated due to the increasing number of road automobile users all over the world. The accumulation of this waste in the open area poses environmental threats and therefore requires suitable treatments. The use of waste obtained from tire rubber as a construction material could contribute to a circular economy, while at the same time be an eco-friendly method of minimizing the depletion of raw materials used for the development of building materials. This study aims to show the impact of crumb rubber (CR) on the properties of concrete. This review covers the environmental consideration of fresh and hardened properties of composites developed using waste tires. The results show that the plastic nature of CR with suitable admixture led to increasing slump value and consequently enhanced the CR concrete workability

    Exploring engineering properties of waste tire rubber for construction applications-a review of recent advances

    Get PDF
    A sizeable amount of tire rubber waste is generated due to the increasing number of road automobile users all over the world. The accumulation of this waste in the open area poses environmental threats and therefore requires suitable treatments. The use of waste obtained from tire rubber as a construction material could contribute to a circular economy, while at the same time be an eco-friendly method of minimizing the depletion of raw materials used for the development of building materials. This study aims to show the impact of crumb rubber (CR) on the properties of concrete. This review covers the environmental consideration of fresh and hardened properties of composites developed using waste tires. The results show that the plastic nature of CR with suitable admixture led to increasing slump value and consequently enhanced the CR concrete workabilit

    Effects of nano-palm oil fuel ash and nano-eggshell powder on concrete

    Get PDF
    Palm oil fuel ash (POFA) is a by-product from palm oil manufacturing and is currently disposed to open areas and landfills without treatment, thereby causing environment pollution. Grinding POFA to nanoparticles called NPOFA results in increased pozzolanic activity. Meanwhile, eggshells (ESs) are a biowaste from restaurants. They are disposed to landfills, thus generating undesirable gases and causing environmental damages. ES powder (ESP) has a large amount of calcium oxide, which is essential for hydration in concrete production. In this study, ESP was used to induce low calcium content in NPOFA. Cement was replaced with NPOFA at ratios of 0%, 10%, 20%, and 30% to produce green concrete, and the ESP proportions constituted 2.5% and 5% of the total binders. The curing ages were 7, 14, and 28 days. The results showed that NPOFA exhibited a significant improvement in strength of developed green concrete. ESP improved concrete durability by reducing water absorption. Therefore, this concrete may have high resistance to environmental attacks, such as those involving sulfates and acids

    Optimising concrete containing palm oil clinker and palm oil fuel ash using response surface method

    Get PDF
    Cement production led to the consumption of high energy and generated harmful gases, such as CO2. Therefore, the use of alternative materials becomes necessary. The research attempts to use palm oil clinker (POC) and ultrafine palm oil fuel ash (UPOFA) as a full replacement of coarse aggregate and partial cement replacement, respectively. This study aims to use the response surface method (RSM) to optimise the properties of concrete, namely, density and water absorption. The study investigated the density and water absorption of concrete using RSM. Results showed that the density reduced sharply owing to the full replacement coarse aggregate by POC aggregate. Meanwhile, water absorption increased significantly due to the rise in the POC aggregate replacement. However, water absorption decreased because of the use of UPOFA as cement replacement. The study recommended the use of more UPOFA as cement replacement because of its high pozzolanic property

    The present state of the use of eggshell powder in concrete: a review

    Get PDF
    Eggshell (ES) is a bio-waste material obtained from bakers and fast-food restaurants. This waste material is generally disposed of in landfills, causing health hazards and polluting the environment. Eggshell powder (ESP) has high amounts of calcium and can be combined with pozzolanic materials, such as fly ash, which have low calcium content. This paper presents the results of the latest studies on the utilization of ESP as a filler, cement and fine aggregate. The chemical composition, physical properties and fresh and hardened properties of ESP concrete at different proportions are also presented. Results indicate the potential of using ESP with other pozzolanic materials to improve concrete properties and reduce cement production, thereby minimizing environmental pollution. The compressive, flexural and tensile strengths have also been improved with the use of some materials with ESP as cement replacement. However, some studies reported a reduction when cement is replaced with high percentages of ESP, particularly those larger than 10%. Furthermore, the modulus of elasticity decreases with high levels of replacement. The specific gravity of ESP was found to be lower than that of cement. The durability and water absorption of concrete were reduced with the addition of ESP

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore