11,499 research outputs found

    Study of photon emission by electron capture during solar nuclei acceleration. 2: Delimitation of conditions for charge transfert establishment

    Get PDF
    The conditions for establishment of charge transfer during acceleration of nuclei up to Fe, for typical conditions of solar flare regions T = 5 x 10 to the 3rd power to 2.5 x 10 to the 8th power degrees K were explored. Results show that such conditions are widely assorted, depending on the acceleration mechanism, the kind of projections and their velocity, the target elements, the source temperature and consequently on the degree of ionization of matter and the local charge state of the accelerated ions. Nevertheless, in spite of that assorted behavior, there are some general tendencies that can be summarized as follows. In atomic H electron capture is systematically established from thermal energies up to high energies, whatever the element and for both acceleration process. For a given element and fixed temperature (T), the probability and energy domain of electron capture and loss with Fermi are higher than with Betatron acceleration. For a given acceleration process the heavier the ion the higher the probability and the wider the energy range for electron capture and loss. For given acceleration mechanism and fixed element the importance and energy domain of capture and loss increase with T: for those reasons, the energy range of charge equilibrium (illustrated with solid lines on the next figs.) is wider with Fermi and increases with temperature and atomic number of projectiles. For the same reasons, electron loss is smaller while the lighter the element, the lower the temperature and the Betatron process, such that there are conditions for which electron loss is not allowed at low energies, but only electron capture is established

    Study of photon emission by electron capture during solar nuclei acceleration. 3: Photon production evaluations

    Get PDF
    Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration

    Study of non-thermal photon production under different scenarios in solar flares. 1: Scenarios and formulations

    Get PDF
    In order to study the overall phenomenology involved in solar flares, it is necessary to understand their individual manifestation before building a corresponding description of the global phenomenon. Here the concern is with the production of X and gamma rays in solar flares. Flares are initiated very often within the closed magnetic field configurations of active centers. According (2) when beta = kinetic energy density/magnetic energy density approximately 0.2, the magnetic trap configuration is destructed within the time scale of the impulsive phase of flares ( 100 s). A first particle acceleration stage occurs during this phase as indicated by impulsive microwave and hard X-rays bursts. In some flare events, when the field strength beta is very high, the broken field lines may close again, such that later, in the course of the flash and main phases more hot plasma of very high conductivity is created, and so, the field and frozen plasma expand outward, as the kinetic pressure inside the closed loops increases. The magnetically trapped particles excite strong Alfven wave turbulence of small transverse scale

    Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    Get PDF
    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions

    Study of non-thermal photon production under different scenarios in solar flares. 2: The Compton inverse and Bremsstrahlung models and fittings

    Get PDF
    Energy spectra of photons emitted from Bremsstrahlung (BR) of energetic electrons with matter, is obtained from the deconvolution of the electron energy spectra. It can be inferred that the scenario for the production of X-rays and gamma rays in solar flares may vary from event to event. However, it is possible in many cases to associated low energy events to impulsive acceleration, and the high energy phase of some events to stochastic acceleration. In both cases, flare particles seem to be strongly modulated by local energy losses. Electric field acceleration, associated to neutral current sheets is a suitable candidate for impulsive acceleration. Finally, that the predominant radiation process of this radiation is the inverse Compton effect due to the local flare photon field

    Experimental test for interpreting the increase in sensibility of doped CR-39

    Get PDF
    In recent years the sensibility of CR-39 to nuclear tracks has been increased by doping the corresponding monomer with dioctyl phtalate. At this regard, two theoretical approaches are current managed to explain this phenomenon: either the doping react with the active radicals in the chain blocking them, stopping crosslinking between chains, or alternatively that the doping gets between them giving wider space between the crosslinkined chains

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table

    Trapping tetracycline-loaded nanoparticles into polycaprolactone fiber networks for periodontal regeneration therapy

    Get PDF
    The controlled delivery of antibiotics, anti-inflammatory agents, or chemotherapeutic agents to the periodontal site is a recognized strategy to improve the efficiency of regenerative processes of hard tissues. A novel approach based on the trapping of tetracycline hydrochloride–loaded particles in polycaprolactone nanofibers was used to guide the regeneration processes of periodontal tissue at the gum interface. Chitosan nanoparticles loaded with different levels of tetracycline hydrochloride (up to 5% wt) were prepared by solution nebulization induced by electrical forces (i.e. electrospraying). The fine tuning of process parameters allows to obtain nanoparticles with tailored sizes ranging from 0.485 ± 0.147 μm to 0.639 ± 0.154 μm. The tetracycline hydrochloride release profile had a predominant burst effect for the first 70% of release followed by a relatively slow release over 24 h, which is promising for oral drug delivery. We also demonstrated that trapping tetracycline hydrochloride–loaded particles with submicrometer diameters into a polycaprolactone fiber network contributed to slowing the release of tetracycline hydrochloride from the nanoparticles, thus providing a more prolonged release in the periodontal pocket during clinical therapy. Preliminary studies on human mesenchymal stem cells confirm the viability of cells up to 5 days after culture, and thereby, validate the use of nanoparticle-/nanofiber-integrated systems in periodontal therapie

    Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean

    Get PDF
    Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2), total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs) are also part of the database, but the pH quality control (QC) is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC), are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP) were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate) to 54% (for phosphate) depending on the variable
    corecore