17 research outputs found

    Is the vagus nerve our neural connectome?

    Get PDF
    What are the implications of the vagus nerve being able to mediate the time-dependent plasticity of an array of sensorimotor networks

    CCHD Screening Implementation Efforts in Latin American Countries by the Ibero American Society of Neonatology (SIBEN).

    Get PDF
    Congenital heart disease (CHD) is among the four most common causes of infant mortality in Latin America. Pulse oximetry screening (POS) is useful for early diagnosis and improved outcomes of critical CHD. Here, we describe POS implementation efforts in Latin American countries guided and/or coordinated by the Ibero American Society of Neonatology (SIBEN), as well as the unique challenges that are faced for universal implementation. SIBEN collaborates to improve the neonatal quality of care and outcomes. A few years ago, a Clinical Consensus on POS was finalized. Since then, we have participated in 12 Latin American countries to educate neonatal nurses and neonatologists on POS and to help with its implementation. The findings reveal that despite wide disparities in care that exist between and within countries, and the difficulties and challenges in implementing POS, significant progress has been made. We conclude that universal POS is not easy to implement in Latin America but, when executed, has not only been of significant value for babies with CHD, but also for many with other hypoxemic conditions. The successful and universal implementation of POS in the future is essential for reducing the mortality associated with CHD and other hypoxemic conditions and will ultimately lead to the survival of many more Latin American babies. POS saves newborns' lives in Latin America

    Is the vagus nerve our neural connectome?

    No full text

    Vagus Nerve Stimulation Enhances Extinction of Conditioned Fear in Rats and Modulates Arc Protein, CaMKII, and GluN2B-Containing NMDA Receptors in the Basolateral Amygdala

    No full text
    Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction

    Author response

    No full text
    Recovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of stimulation because connectivity in critical neural circuits has been restored
    corecore