592 research outputs found

    Database for CO2 separation performances of MOFs based on computational materials screening

    Get PDF
    Metal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.European Research Counci

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey

    Get PDF
    Background : Helicobacter pylori infection is the main cause of gastritis, gastroduodenal ulcer disease, MALT lymphoma, and adenocarcinoma of the stomach. The reported prevalence of H. pylori in the adult population in Turkey is 67.6%–81.3%. A national meta-analysis showed that the average H. pylori eradication rate with proton pump inhibitor-based triple regimens in Turkey had decreased from 84% in 1997 to 55.3% in 2004, suggesting a need to evaluate alternative regimens. Materials and methods : The study was a prospective, single-center trial with a parallel group design. After the selection procedure, consecutive out-patients were assigned to one of six study groups using random sampling numbers. All patients received amoxicillin 1,000 mg b.i.d. and clarithromycin 500 mg b.i.d. along with ranitidine bismuth citrate 400 mg b.i.d., or omeprazole 20 mg b.i.d., or lansoprazole 30 mg b.i.d., or rabeprazole 20 mg b.i.d., or pantoprazole 40 mg b.i.d., or esomeprazole 40 mg b.i.d. for 14 days. Results : When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to treat and per protocol analyses. The other four groups (omeprazole, lansoprazole, pantoprazole, and esomeprazole groups) showed statistically significant lower eradication rates both at intention to treat (between 57.6 and 66.7%) and per protocol (between 60.3 and 72.1%) analyses when compared with ranitidine bismuth citrate and rabeprazole groups (p<.05). Conclusion : Ranitidine bismuth citrate and/or rabeprazole based triple therapies must be preferred for the first-line treatment of H. pylori infection

    State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An Insight into the 5th International Porto Congress of Multiple Sclerosis

    Get PDF
    The 5th International Porto Congress of Multiple Sclerosis took place between the 14th and 16th of February 2019 in Porto, Portugal. Its intensive programme covered a wide-range of themes—including many of the hot topics, challenges, pitfalls and yet unmet needs in the field of multiple sclerosis (MS)—led by a number of well-acknowledged world experts. This meeting review summarizes the talks that took place during the congress, which focussed on issues in MS as diverse as the development and challenges of progressive MS, epidemiology, differential diagnosis, medical management, molecular research and imaging tools

    ENGOT-ov-6/TRINOVA-2: Randomised, double-blind, phase 3 study of pegylated liposomal doxorubicin plus trebananib or placebo in women with recurrent partially platinum-sensitive or resistant ovarian cancer

    Get PDF
    Aims: Trebananib, a peptide-Fc fusion protein, inhibits angiogenesis by inhibiting binding of angiopoietin-1/2 to the receptor tyrosine kinase Tie2. This randomised, double-blind, placebo-controlled phase 3 study evaluated whether trebananib plus pegylated liposomal doxorubicin (PLD) improved progression-free survival (PFS) in patients with recurrent epithelial ovarian cancer. / Methods: Women with recurrent ovarian cancer (platinum-free interval ≤12 months) were randomised to intravenous PLD 50 mg/m2 once every 4 weeks plus weekly intravenous trebananib 15 mg/kg or placebo. PFS was the primary end-point; key secondary end-points were objective response rate (ORR) and duration of response (DOR). Owing to PLD shortages, enrolment was paused for 13 months; the study was subsequently truncated. / Results: Two hundred twenty-three patients were enrolled. Median PFS was 7.6 months (95% CI, 7.2–9.0) in the trebananib arm and 7.2 months (95% CI, 4.8–8.2) in the placebo arm, with a hazard ratio of 0.92 (95% CI, 0.68–1.24). However, because the proportional hazards assumption was not fulfilled, the standard Cox model did not provide a reliable estimate of the hazard ratio. ORR in the trebananib arm was 46% versus 21% in the placebo arm (odds ratio, 3.43; 95% CI, 1.78–6.64). Median DOR was improved (trebananib, 7.4 months [95% CI, 5.7–7.6]; placebo, 3.9 months [95% CI, 2.3–6.5]). Adverse events with a greater incidence in the trebananib arm included localised oedema (61% versus 32%), ascites (29% versus 9%) and vomiting (45% versus 33%). / Conclusions: Trebananib demonstrated anticancer activity in this phase 3 study, indicated by improved ORR and DOR. Median PFS was not improved. No new safety signals were identified. / Trial registration: ClinicalTrials.gov, NCT0128125

    Overview on the phenomenon of two-qubit entanglement revivals in classical environments

    Full text link
    The occurrence of revivals of quantum entanglement between separated open quantum systems has been shown not only for dissipative non-Markovian quantum environments but also for classical environments in absence of back-action. While the phenomenon is well understood in the first case, the possibility to retrieve entanglement when the composite quantum system is subject to local classical noise has generated a debate regarding its interpretation. This dynamical property of open quantum systems assumes an important role in quantum information theory from both fundamental and practical perspectives. Hybrid quantum-classical systems are in fact promising candidates to investigate the interplay among quantum and classical features and to look for possible control strategies of a quantum system by means of a classical device. Here we present an overview on this topic, reporting the most recent theoretical and experimental results about the revivals of entanglement between two qubits locally interacting with classical environments. We also review and discuss the interpretations provided so far to explain this phenomenon, suggesting that they can be cast under a unified viewpoint.Comment: 16 pages, 9 figures. Chapter written for the upcoming book "Lectures on general quantum correlations and their applications

    Establishment of Protein Delivery Systems Targeting Podocytes

    Get PDF
    Podocytes are uniquely structured cells that are critical to the kidney filtration barrier. Their anatomic location on the outer side of the glomerular capillaries expose podocytes to large quantities of both plasma and urinary components and thus are reachable for drug delivery. Recent years have made clear that interference with podocyte-specific disease pathways can modulate glomerular function and influence severity and progression of glomerular disease.Here, we describe studies that show efficient transport of proteins into the mammalian cells mouse 3T3 fibroblasts and podocytes, utilizing an approach termed profection. We are using synthetic lipid structures that allow the safe packing of proteins or antibodies resulting in the subsequent delivery of protein into the cell. The uptake of lipid coated protein is facilitated by the intrinsic characteristic of cells such as podocytes to engulf particles that are physiologically retained in the extracellular matrix. Profection of the restriction enzyme MunI in 3T3 mouse fibroblasts caused an increase in DNA degradation. Moreover, purified proteins such as beta-galactosidase and the large GTPase dynamin could be profected into podocytes using two different profection reagents with the success rate of 95-100%. The delivered beta-galactosidase enzyme was properly folded and able to cleave its substrate X-gal in podocytes. Diseased podocytes are also potential recipients of protein cargo as we also delivered fluorophore labeled IgG into puromycin treated podocytes. We are currently optimizing our protocol for in vivo profection.Protein transfer is developing as an exciting tool to study and target highly differentiated cells such as podocytes

    Nanomaterial-based Sensors for the Study of DNA Interaction with Drugs

    Get PDF
    The interaction of drugs with DNA has been searched thoroughly giving rise to an endless number of findings of undoubted importance, such as a prompt alert to harmful substances, ability to explain most of the biological mechanisms, or provision of important clues in targeted development of novel chemotherapeutics. The existence of some drugs that induce oxidative damage is an increasing point of concern as they can cause cellular death, aging, and are closely related to the development of many diseases. Because of a direct correlation between the response, strength/ nature of the interaction and the pharmaceutical action of DNA-targeted drugs, the electrochemical analysis is based on the signals of DNA before and after the interaction with the DNA-targeted drug. Nowadays, nanoscale materials are used extensively for offering fascinating characteristics that can be used in designing new strategies for drug-DNA interaction detection. This work presents a review of nanomaterials (NMs) for the study of drug-nucleic acid interaction. We summarize types of drug-DNA interactions, electroanalytical techniques for evidencing these interactions and quantification of drug and/or DNA monitoring

    Low CD10 mRNA Expression Identifies High-Risk Ductal Carcinoma In Situ (DCIS)

    Get PDF
    PURPOSE: Optimal management of breast ductal carcinoma in situ (DCIS) is controversial, and many patients are still overtreated. The local death of myoepithelial cells (MECs) is believed to be a pre-requisite to tumor invasion. We thus hypothesized that loss of CD10 expression, a MEC surface peptidase, would signify basement membrane disruption and confer increased risk of relapse in DCIS. The aim of our study was to retrospectively evaluate the prognostic value of CD10 in DCIS. EXPERIMENTAL DESIGN: CD10 expression was evaluated by quantitative RT-PCR and immunohistochemistry using paraffin-embedded samples of normal breast tissue (n = 11); of morphologically normal ducts associated with DCIS (n = 10); and of DCIS without an invasive component (n = 154). RESULTS: CD10 immunostaining was only observed in MECs in normal tissue and in DCIS. Normal tissue showed high mRNA expression levels of CD10, whereas DCIS showed a variable range. After a median follow-up of 6 years, DCIS with CD10 expression below the levels observed in normal tissue (71%) demonstrated a higher risk of local relapse (HR = 1.88; [95CI:1.30-2.70], p = 0.001) in univariate analysis. No relapse was observed in patients expressing high CD10 mRNA levels (29%) similar to the ones observed in normal tissue. In multivariate analysis including known prognostic factors, low CD10 mRNA expression remained significant (HR = 2.25; [95%CI:1.24-4.09], p = 0.008), as did the recently revised Van Nuys Prognostic Index (VNPI) score (HR = 2.03; [95%CI:1.23-3.35], p = 0.006). CONCLUSION: The decrease of CD10 expression in MECs is associated with a higher risk of relapse in DCIS; this knowledge has the potential to improve DCIS management
    corecore