9 research outputs found

    OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more.

    Get PDF
    OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org

    Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support.

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years

    The Quest for Orthologs benchmark service and consensus calls in 2020.

    Get PDF
    The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases

    OMAMO: orthology-based alternative model organism selection.

    Get PDF
    The conservation of pathways and genes across species has allowed scientists to use non-human model organisms to gain a deeper understanding of human biology. However, the use of traditional model systems such as mice, rats, and zebrafish is costly, time-consuming and increasingly raises ethical concerns, which highlights the need to search for less complex model organisms. Existing tools only focus on the few well-studied model systems, most of which are complex animals. To address these issues, we have developed Orthologous Matrix and Alternative Model Organisms, a software and a web service that provide the user with the best non-complex organism for research into a biological process of interest based on orthologous relationships between human and the species. The outputs provided by OMAMO were supported by a systematic literature review. https://omabrowser.org/omamo/, https://github.com/DessimozLab/omamo. Supplementary data are available at Bioinformatics online

    DrosOMA: the Drosophila Orthologous Matrix browser.

    No full text
    Comparative genomic analyses to delineate gene evolutionary histories inform the understanding of organismal biology by characterising gene and gene family origins, trajectories, and dynamics, as well as enabling the tracing of speciation, duplication, and loss events, and facilitating the transfer of gene functional information across species. Genomic data are available for an increasing number of species from the genus Drosophila, however, a dedicated resource exploiting these data to provide the research community with browsable results from genus-wide orthology delineation has been lacking. Using the OMA Orthologous Matrix orthology inference approach and browser deployment framework, we catalogued orthologues across a selected set of Drosophila species with high-quality annotated genomes. We developed and deployed a dedicated instance of the OMA browser to facilitate intuitive exploration, visualisation, and downloading of the genus-wide orthology delineation results. DrosOMA - the Drosophila Orthologous Matrix browser, accessible from https://drosoma.dcsr.unil.ch/ - presents the results of orthology delineation for 36 drosophilids from across the genus and four outgroup dipterans. It enables querying and browsing of the orthology data through a feature-rich web interface, with gene-view, orthologous group-view, and genome-view pages, including comprehensive gene name and identifier cross-references together with available functional annotations and protein domain architectures, as well as tools to visualise local and global synteny conservation. The DrosOMA browser demonstrates the deployability of the OMA browser framework for building user-friendly orthology databases with dense sampling of a selected taxonomic group. It provides the Drosophila research community with a tailored resource of browsable results from genus-wide orthology delineation

    OMA standalone: orthology inference among public and custom genomes and transcriptomes.

    No full text
    Genomes and transcriptomes are now typically sequenced by individual laboratories but analyzing them often remains challenging. One essential step in many analyses lies in identifying orthologs-corresponding genes across multiple species-but this is far from trivial. The Orthologous MAtrix (OMA) database is a leading resource for identifying orthologs among publicly available, complete genomes. Here, we describe the OMA pipeline available as a standalone program for Linux and Mac. When run on a cluster, it has native support for the LSF, SGE, PBS Pro, and Slurm job schedulers and can scale up to thousands of parallel processes. Another key feature of OMA standalone is that users can combine their own data with existing public data by exporting genomes and precomputed alignments from the OMA database, which currently contains over 2100 complete genomes. We compare OMA standalone to other methods in the context of phylogenetic tree inference, by inferring a phylogeny of Lophotrochozoa, a challenging clade within the protostomes. We also discuss other potential applications of OMA standalone, including identifying gene families having undergone duplications/losses in specific clades, and identifying potential drug targets in nonmodel organisms. OMA standalone is available under the permissive open source Mozilla Public License Version 2.0

    OMA orthology in 2024: improved prokaryote coverage, ancestral and extant GO enrichment, a revamped synteny viewer and more in the OMA Ecosystem.

    No full text
    In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org

    The role of palladium nanoparticles in catalytic C–C cross-coupling reactions

    No full text
    corecore