199 research outputs found

    State and Federal Powers Clash Over Medical Marijuana in United States v. McIntosh

    Get PDF
    The unanimous opinion in United States v. McIntosh held that a spending rider approved by Congress in 2014 and 2015 prohibits the United States Department of Justice (the Department) from prosecuting marijuana suppliers who fully comply with state laws allowing the use of marijuana for medicinal purposes. The Department argued that the rider only prohibits litigation against the states themselves, rather than prosecution of individuals who provide marijuana for medicinal purposes, because the language of the rider indicates that the Department may not use appropriated money to prevent states from implementing their medical marijuana laws. The three-judge panel of the United States Court of Appeals for the Ninth Circuit rejected this interpretation, holding that the rider prohibits the Department from spending funds from relevant appropriations acts for the prosecution of individuals who engaged in conduct permitted by state medical marijuana laws and who fully complied with such laws. Individuals who do not strictly comply with all state-law conditions regarding the use, distribution, possession, and cultivation of medical marijuana, on the other hand, have engaged in conduct that is unauthorized. Thus, prosecuting individuals such as these does not violate the rider. However, if the Department wishes to continue these prosecutions, the defendants are entitled to evidentiary hearings at which they may demonstrate that their actions were authorized by state law. The Ninth Circuit’s ruling represents the highest judicial holding that this omnibus legislation does indeed curb federal crackdowns on state-legal medical marijuana programs

    Preface

    Get PDF

    Habitat diversity and type govern potential nitrogen loss by denitrification in coastal sediments and differences in ecosystem-level diversities of disparate N2O reducing communities

    Get PDF
    In coastal sediments, excess nitrogen is removed primarily by denitrification. However, losses in habitat diversity may reduce the functional diversity of microbial communities that drive this important filter function. We examined how habitat type and habitat diversity affects denitrification and the abundance and diversity of denitrifying and N2O reducing communities in illuminated shallow-water sediments. In a mesocosm experiment, cores from four habitats were incubated in different combinations, representing ecosystems with different habitat diversities. We hypothesized that habitat diversity promotes the diversity of N2O reducing communities and genetic potential for denitrification, thereby influencing denitrification rates. We also hypothesized that this will depend on the identity of the habitats. Habitat diversity positively affected ecosystem-level diversity of clade II N2O reducing communities, however neither clade I nosZ communities nor denitrification activity were affected. The composition of N2O reducing communities was determined by habitat type, and functional gene abundances indicated that silty mud and sandy sediments had higher genetic potentials for denitrification and N2O reduction than cyanobacterial mat and Ruppia maritima meadow sediments. These results indicate that loss of habitat diversity and specific habitats could have negative impacts on denitrification and N2O reduction, which underpin the capacity for nitrogen removal in coastal ecosystems

    Diversity of habitats and bacterial communities support landscape-scale multifunctionality differently across seasons

    Get PDF
    Abstract In this study, we demonstrate how changes in the diversity of habitat and bacterial communities affect landscape multifunctionality. Habitat diversity may beget species diversity by increasing niche availability and resource complementarity. Species diversity, in turn, generally promotes multifunctionality, i.e. the simultaneous performance of multiple ecosystem functions. However, the relationship between habitat diversity and functioning remains to be explicitly explored. In order to test the relationship between habitat diversity and multifunctionality we constructed experimental landscapes of four different habitats common in shallow-water sediment ecosystems: cyanobacterial mats, Ruppia maritima meadows, silty mud and sandy beach. We manipulated the diversity of these habitats over three consecutive seasons and measured bacterial diversity, benthic microalgal diversity and four functions related to marine nitrogen cycling (gross primary production, nitrogen fixation, denitrification and uptake of dissolved inorganic nitrogen). Our results showed that higher habitat and bacterial diversity, but not benthic microalgal diversity, increased landscape multifunctionality. However, the relative importance of habitat and bacterial diversity varied with season. Habitat diversity was generally the strongest driver, affecting multifunctionality directly in summer and indirectly via bacterial diversity in autumn. In spring, neither of the two aspects of diversity was important. Our study demonstrates the importance of considering temporal differences in both habitat and species diversity for landscape multifunctionality, and the importance of direct and indirect effects in mediating ecosystem functions. Habitat homogenization in concert with loss in biodiversity can thus be a driving force of declining ecosystem functioning and the services they underpin

    Toxic Algae Silence Physiological Responses to Multiple Climate Drivers in a Tropical Marine Food Chain

    Get PDF
    Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings – especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.</p

    The future of the northeast Atlantic benthic flora in a high CO<sub>2</sub> world

    Get PDF
    Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.</p

    Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification

    Get PDF
    Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam's feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species. Changes in ocean temperature and pH will impact on species, as well as impacting on community interactions. Here warming and acidification cause a clam species to change their feeding mode, with cascading effects for the marine sedimentary food web
    • 

    corecore