2,100 research outputs found

    Torus and AGN properties of nearby Seyfert galaxies: Results from fitting IR spectral energy distributions and spectroscopy

    Get PDF
    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions (SEDs) and ground-based high-angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle, the radial thickness of the torus Y, the angular size of the cloud distribution sigma_torus, and the average number of clouds along radial equatorial rays N_0. The viewing angle is not the only parameter controlling the classification of a galaxy into a type 1 or a type 2. In principle type 2s could be viewed at any viewing angle as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an AGN photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, while in type 2s, as expected, tend to be low. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6pc. The scaling of the models to the data also provided the AGN bolometric luminosities, which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L_bol(AGN)~10^{43}-10^{47}erg/s, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower at high AGN luminosities than at low AGN luminosities. This is because at low AGN luminosities the tori appear to have wider angular sizes and more clouds along radial equatorial rays. We cannot, however rule out the possibility that this is due to contamination by extended dust structures not associated with the dusty torus at low AGN luminosities, since most of these in our sample are hosted in highly inclined galaxies. (Abridged)Comment: Accepted for publication in Ap

    Resolving the AGN and host emission in the mid-infrared using a model-independent spectral decomposition

    Get PDF
    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGN) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method, with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum, with a 1-sigma dispersion of 0.12 dex in luminosity and typical uncertainties of ~0.19 in the spectral index and ~0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGN. This allows for unbiased studies of the AGN emission in intermediate and high redshift galaxies -currently inaccesible to ground-based observations- with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://www.denebola.org/ahc/deblendIRS.Comment: 16 pages, 15 figures, 2 tables, accepted for publication in Ap

    Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068

    Get PDF
    We present sub-arcsecond 7.5−-13 ÎŒ\mum imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 ×\times 60 pc extended polarized feature in the northern ionization cone, with a uniform ∌\sim44∘^{\circ} polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at ∌\sim24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at ∌\sim9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is â‰Č\lesssim0.1 per cent in the 8−-13 ÎŒ\mum wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4−-82 mG through paramagnetic alignment, and 139−20+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at Kâ€Č' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≀\le0.17 M⊙_{\odot} yr−1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of ≄\geq105^{5} yr with a rotational velocity of ≀\leq1228 km s−1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: Application to sulfamethoxazole and trimethoprim

    Get PDF
    Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/ÎŒPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/ÎŒPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 ÎŒm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 ÎŒg/mL, providing a detection limit of 3.85 ÎŒg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/ÎŒPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters

    MAMMALS IN PORTUGAL: A data set of terrestrial, volant, and marine mammal occurrences in Portugal

    Get PDF
    Mammals are threatened worldwide, with ca. 26% of all species being included in the IUCN threatened categories. This overall pattern is primarily associated to habitat loss or degradation, and human persecution for terrestrial mammals, and pollution, open net fishing, climate change and prey depletion for marine mammals. Mammals play a key role in maintaining ecosystems functionality and resilience, and therefore information on their distribution is crucial to delineate and support conservation actions. MAMMALS IN PORTUGAL is a publicly available data set compiling unpublished geo-referenced occurrence records of 92 terrestrial, volant, and marine mammals in mainland Portugal and archipelagos of Azores and Madeira that includes 107,852 data entries between 1873 and 2021 (72% of the data occurring in 2000 and 2021). The methods used to collect the data were: live observations/captures (42%), sign surveys (38%), camera trapping (16%), bioacoustics surveys (4%) and radio-tracking and inquiries that represent less than 1% of the records. The data set includes 13 types of records: 1) burrows | soil mounds | tunnel, 2) capture, 3) colony, 4) dead animal | hair | skulls | jaws, 5) genetic confirmation, 6) inquiries, 7) observation of live animal, 8), observation in shelters, 9) photo trapping | video, 10), predators diet | pellets | pine cones/nuts, 11) scat | track | ditch, 12) telemetry and 13) vocalization | echolocation. The spatial uncertainty of most records ranges between 0 and 100 m (76%). Rodentia (n = 34,754) has the highest number of records followed by Chiroptera (n = 18,858), Carnivora (n = 18,594), Lagomorpha (n = 17,679), Cetartiodactyla (n = 11,568) and Eulipotyphla (n = 6400). The data set includes records of species classified by the IUCN as threatened (e.g., Oryctolagus cuniculus (n = 12,407), Monachus monachus (n = 1512), and Lynx pardinus (n = 197)]. We believe that this data set may stimulate the publication of other European countries data sets which would certainly contribute to ecology and conservation-related research, and therefore assisting on the development of more accurate and tailored conservation management strategies for each species. There are no copyright restrictions; please cite this data paper when the data are used in publications

    On the difference of torus geometry between hidden and non-hidden broad line active galactic nuclei

    Get PDF
    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGN) with clumpy torus models. We compiled high spatial resolution (∌0.3\sim 0.3--0.70.7 arcsec) mid-IR NN-band spectroscopy, QQ-band imaging and nuclear near- and mid-IR photometry from the literature. Combining these nuclear near- and mid-IR observations, far-IR photometry and clumpy torus models, enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties; type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGN have smaller torus opening angles and larger covering factors than those of HBLR AGN. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGN.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Molecular line emission in NGC1068 imaged with ALMA. I An AGN-driven outflow in the dense molecular gas

    Get PDF
    We investigate the fueling and the feedback of star formation and nuclear activity in NGC1068, a nearby (D=14Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We have used ALMA to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3) and CS(7-6)) and their underlying continuum emission in the central r ~ 2kpc of NGC1068 with spatial resolutions ~ 0.3"-0.5" (~ 20-35pc). Molecular line and dust continuum emissions are detected from a r ~ 200pc off-centered circumnuclear disk (CND), from the 2.6kpc-diameter bar region, and from the r ~ 1.3kpc starburst (SB) ring. Most of the emission in HCO+, HCN and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the AGN, betraying ongoing feedback. The gas kinematics from r ~ 50pc out to r ~ 400pc reveal a massive (M_mol ~ 2.7 (+0.9, -1.2) x 10^7 Msun) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet and the occurrence of outward motions in the disk suggests that the outflow is AGN-driven. The outflow rate estimated in the CND, dM/dt ~ 63 (+21, -37) Msun yr^-1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN-driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion time scale of <=1 Myr.Comment: Version accepted for publication in A&A (June 4th). Accepted version. References (3) added and minor typos corrected. 24 pages, 20 figure

    ALMA resolves the torus of NGC 1068: continuum and molecular line emission

    Get PDF
    We have used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 {\mu}m continuum emission from the 300 pc-sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ~4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc-diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near and mid-infrared (NIR/MIR) data with CLUMPY models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: Mgas_torus=(1+-0.3)x10^5 Msun and Rtorus=3.5+-0.5 pc. The dynamics of the molecular gas in the torus show non-circular motions and enhanced turbulence superposed on the rotating pattern of the disk. The kinematic major axis of the CO torus is tilted relative to its morphological major axis. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we have found evidence suggesting that the molecular torus is less inclined (i=34deg-66deg) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei (AGN) tori.Comment: Final version accepted by the Astrophysical Journal Letters (ApJLetters) on April 27th 2016, 6 pages, 5 figure
    • 

    corecore