47 research outputs found

    Coating of Polyvinylchloride for Reduced Cell / Bacterial Adhesion and Antibacterial Properties

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)A Polyvinylchloride surface was modified by coating a biocompatible, hydrophilic and antibacterial polymer by a mild surface modification method. The surface was first activated and then functionalized, followed by coating with polymer. The surface functionality was evaluated using cell adhesion, bacterial adhesion and bacterial viability for polymers with antibacterial properties. 3T3 mouse fibroblast cells were used for cell adhesion, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were used for bacterial adhesion in the first study, Pseudomonas aeruginosa and Staphylococcus aureus were used for bacterial adhesion and antibacterial activity in the second study. Chapter 2 reports how we synthesized, immobilized and evaluated a novel hydrophilic polymer with anti-fouling properties onto surface of polyvinylchloride via an effective and mild surface coating technique. The polyvinylchloride surface was first activated by azidation as well as amination, and then tethering a newly synthesized hydrophilic and biocompatible polyvinylpyrrolidone having pendent reactive succinimide functionality onto the surface. Results show that the coated hydrophilic polymer significantly reduced the 3T3 fibroblast cell adhesion as well as the adhesion of the three bacterial species. Chapter 3 reports how we prepared, immobilized and evaluated an antibacterial and anti-fouling polymer onto polyvinylchloride surface following an efficient and simple method of surface modification. The surface coated with a terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-2(5H)-furanone derivative and succinimide residue was evaluated with cell adhesion, bacterial adhesion and bacterial viability. Surface adhesion was evaluated with 3T3 mouse fibroblast cells and two bacterial species. Also, antibacterial activity was evaluated by bacterial viability assay with the two bacterial species. Results showed that the polymer-modified polyvinylchloride surface exhibited significantly decreased 3T3 fibroblast cell adhesion and bacterial adhesion. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting bacterial growth with bactericidal activity. Altogether, we have successfully modified the surface of polyvinylchloride using a novel efficient and mild surface coating technique. The first hydrophilic polymer-coated polyvinylchloride surface significantly reduced cell adhesion as well as adhesion of three bacterial species. The second hydrophilic and antibacterial polymer-coated polyvinylchloride surface demonstrated significant antibacterial functions by inhibiting bacterial growth and killing bacteria in addition to significantly reduced 3T3 fibroblasts and bacterial adhesions

    Natural Radionuclide Levels and Radiological Hazards of Khour Abalea Mineralized Pegmatites, Southeastern Desert, Egypt

    Full text link
    Arranged from oldest to youngest, the main granitic rock units exposed in Khour Abalea are metagabbros, cataclastic rocks, ophiolitic melange, granitic rocks, pegmatite and lamprophyre dykes. The presence of radioactivity associated with the heavy bearing minerals in construction materials—like granite—increased interest in the extraction process. As it turns out, granitic rocks play an important economic part in the examination of an area’s surroundings. The radionuclide content is measured by using an NaI (Tl)-detector. In the mineralized pegmatites, U (326 to 2667 ppm), Th (562 to 4010 ppm), RaeU (495 to 1544 ppm) and K (1.38 to 9.12%) ranged considerably with an average of 1700 ppm, 2881.86 ppm, 1171.82 ppm and 5.04%, respectively. Relationships among radioelements clarify that radioactive mineralization in the studied pegmatites is magmatic and hydrothermal. A positive equilibrium condition confirms uranium addition to the studied rocks. This study determined226Ra,232Th and40K activity concentrations in pegmatites samples and assessed the radiological risks associated with these rocks. The activity concentrations of226Ra (13,176 ± 4394 Bq kg−1 ),232Th (11,883 ± 5644 Bq kg−1 ) and40K (1573 ± 607 Bq kg−1 ) in pegmatites samples (P) are greater than the global average. The high activity of the mineralized pegmatite is mainly attributed to the presence of uranium mineral (autunite), uranophane, kasolite and carnotite, thorium minerals (thorite, thorianite and uranothorite) as well as accessories minerals—such as zircon and monazite. To assess the dangerous effects of pegmatites in the studied area, various radiological hazard factors (external, internal hazard indices, radium equivalent activity and annual effective dose) are estimated. The investigated samples almost surpassed the recommended allowable thresholds for all of the environmental factors. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R111), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    A Novel Epoxy Resin-Based Composite with Zirconium and Boron Oxides: An Investigation of Photon Attenuation

    No full text
    We have attempted to develop the gamma radiation shielding abilities of newly prepared epoxy composites by introducing ZrO2. The radiation shielding parameters are experimentally reported below. The experimental setup included an HPGe detector and different radioactive point sources which emitted photons with energies of 0.06, 0.662, 1.173, and 1.333 MeV. The gamma radiation shielding abilities of the epoxy composites were examined in the context of the linear attenuation coefficient (LAC), half-value layer (HVL), radiation absorption ratio, and other factors. The experimental and Phy-X results for the LAC were compared, and acceptable consistency was reported. The lowest LAC values were reported for EBZr-0 (free of ZrO2), and we found that the photon attenuation competence of the present epoxy improved as a result of increasing the ZrO2 content. We compared the LAC values for the present epoxy composites with other samples, and we found that the prepared composites with 20% to 40% ZrO2 had higher LAC values than epoxy with 30% Yahyali Stone. The HVL lengths of the epoxy composites reduced with the addition of ZrO2 for the four selected energies, which confirmed that introducing ZrO2 improves the radiation absorption abilities of epoxy composites. At 0.06 MeV, the HVL for the ZrO2-free epoxy was 2.60 cm, which fell to 0.23 cm after adding 40% ZrO2. The mean free path (MFP) for the prepared composites was less than 1 cm at 0.06 MeV (standard for EBZr-0), while it was 1.32 cm for EBZr-10. For the other energies, it was higher than 6 cm, and became higher than 10 cm at 1.333 MeV for all composites. The obtained results suggest that non-toxic, natural, and cheap epoxy composites with high ZrO2 content have the potential to improve the gamma ray shielding competence of epoxy composites for low energy radiation applications

    Paraffin Wax [As a Phase Changing Material (PCM)] Based Composites Containing Multi-Walled Carbon Nanotubes for Thermal Energy Storage (TES) Development

    No full text
    Thermal energy storage (TES) technologies are considered as enabling and supporting technologies for more sustainable and reliable energy generation methods such as solar thermal and concentrated solar power. A thorough investigation of the TES system using paraffin wax (PW) as a phase changing material (PCM) should be considered. One of the possible approaches for improving the overall performance of the TES system is to enhance the thermal properties of the energy storage materials of PW. The current study investigated some of the properties of PW doped with nano-additives, namely, multi-walled carbon nanotubes (MWCNs), forming a nanocomposite PCM. The paraffin/MWCNT composite PCMs were tailor-made for enhanced and efficient TES applications. The thermal storage efficiency of the current TES bed system was approximately 71%, which is significant. Scanning electron spectroscopy (SEM) with energy dispersive X-ray (EDX) characterization showed the physical incorporation of MWCNTs with PW, which was achieved by strong interfaces without microcracks. In addition, the FTIR (Fourier transform infrared) and TGA (thermogravimetric analysis) experimental results of this composite PCM showed good chemical compatibility and thermal stability. This was elucidated based on the observed similar thermal mass loss profiles as well as the identical chemical bond peaks for all of the tested samples (PW, CNT, and PW/CNT composites)
    corecore