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ABSTRACT

Almousa, Rashed Abdulaziz R. M.S.B.M.E., Purdue University, May 2019. Coating of
Polyvinylchloride for Reduced Cell/Bacterial Adhesion and Antibacterial Properties.
Major Professor: Dong Xie.

A Polyvinylchloride surface was modified by coating a biocompatible, hydrophilic

and antibacterial polymer by a mild surface modification method. The surface was

first activated and then functionalized, followed by coating with polymer. The surface

functionality was evaluated using cell adhesion, bacterial adhesion and bacterial

viability for polymers with antibacterial properties. 3T3 mouse fibroblast cells were

used for cell adhesion, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus

aureus were used for bacterial adhesion in the first study, Pseudomonas aeruginosa

and Staphylococcus aureus were used for bacterial adhesion and antibacterial activity

in the second study.

Chapter 2 reports how we synthesized, immobilized and evaluated a novel hydro-

philic polymer with anti-fouling properties onto surface of polyvinylchloride via

an effective and mild surface coating technique. The polyvinylchloride surface

was first activated by azidation as well as amination, and then tethering a newly

synthesized hydrophilic and biocompatible polyvinylpyrrolidone having pendent

reactive succinimide functionality onto the surface. Results show that the coated

hydrophilic polymer significantly reduced the 3T3 fibroblast cell adhesion as well as

the adhesion of the three bacterial species.

Chapter 3 reports how we prepared, immobilized and evaluated an anti-

bacterial and anti-fouling polymer onto polyvinylchloride surface following an

efficient and simple method of surface modification. The surface coated with

a terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-2(5H)-
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furanone derivative and succinimide residue was evaluated with cell adhesion,

bacterial adhesion and bacterial viability. Surface adhesion was evaluated with 3T3

mouse fibroblast cells and two bacterial species. Also, antibacterial activity was

evaluated by bacterial viability assay with the two bacterial species. Results showed

that the polymer-modified polyvinylchloride surface exhibited significantly decreased

3T3 fibroblast cell adhesion and bacterial adhesion. Furthermore, the modified

polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting

bacterial growth with bactericidal activity.

Altogether, we have successfully modified the surface of polyvinylchloride using

a novel efficient and mild surface coating technique. The first hydrophilic polymer-

coated polyvinylchloride surface significantly reduced cell adhesion as well as adhesion

of three bacterial species. The second hydrophilic and antibacterial polymer-

coated polyvinylchloride surface demonstrated significant antibacterial functions by

inhibiting bacterial growth and killing bacteria in addition to significantly reduced

3T3 fibroblasts and bacterial adhesions.
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CHAPTER 1. INTRODUCTION

1.1 Background

Surface modification is very crucial to a variety of biomaterials applications. Some

surfaces need to be modified to be cell- or tissue-integrated whereas others require

modification to be anti-fouling, i.e., lower or no cell adhesion. In light of biomedical

applications, two main factors limit use of polymeric materials in surface-related

medical devices: their highly hydrophobic surface while being used in contact with

body fluid and/or blood [1,2] and bacterial infection or contamination while bacteria

attach and/or grow on surface [3]. Hydrophobic surface can cause cell adhesion,

bacterial adhesion and nonspecific protein adsorption [4–10]. Cell adhesion and

protein adsorption can lead to blood flow blockage if polymers are used internally

[11, 12]. Bacterial attachment and biofilm formation can cause biomaterials-relevant

infections [13]. Some used a strategy to develop entire hydrophilic or amphiphilic

polymers and use them to form medical devices, [14] but others focused on modifying

surface of the formed medical devices [15–20]. Polyvinylchloride is a commonly used

thermoplastic polymer for biomedical application, due to its low cost, easy processing

and low toxicity [1]. This polymer has been used in making many cardiovascular

devices such as catheters, blood vessels, artificial heart pump, dialysis device, and

others [1,21]. However, like most other polymers, this polymer is very hydrophobic [1]

which leads to cell adhesion and protein adsorption, if it contacts body fluid or blood,

and bacteria contamination if it is not sterile. So far, few reports deal with surface

modification of polyvinylchloride.

There is a pressing need for surface modification of polyvinylchloride in order for

this conventional plastic to find wider applications in biomaterials and biomedical

areas. Unitl now, there have been numerous studies on surface modification of
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polymers for decreased cell adhesion and protein adsorption [11, 12, 14–18, 22–25].

Many of them were focused on polyurethanes, polyureas and other types of

polymers [12,14–18,22–26], but some involved polyvinylchloride surface modification,

specifically by plasma, UV, or chemicals [27–36]. Most modifications were limited

to simple chlorine substitution through a nucleophilic reaction [32–36] or surface

free radical formation by plasma or UV [27–31]. Although the chlorine atoms on

polyvinylchloride are labile and can be substituted with a number of nucleophiles,

substitution reactions often need to be carried out in polar organic solvents or polar

organic solvent/water mixtures to make nucleophiles viable and effective [37–39].

On the other hand, polyvinylchloride and most nucleophiles are soluble in polar

organic solvents. Thus, the reactions under polar organic solvents or polar organic

solvent/water mixtures could absolutely alter or damage the surface morphology or

surface topography, although this issue has not been really addressed in the published

literature [37–39]. To keep polyvinylchloride surface intact, water is one of the best

choices to be used as reaction media. However, water is a strong competitor to

most nucleophiles. According to literature, chlorine on polyvinylchloride can be

substituted with ethylenediamine, acromatic thiol, thiocyanate and amino groups in

the presence of water or water/N, N’-dimethylformamide mixture [32–40]. Azidation

in aqueous solution, with the help of a phase transfer agent [41, 42], is a good

example of a technique for modifying the polyvinylchloride surface without worrying

about dissolution and surface damage [35, 36, 41]. Up to date, there has been no

report on surface modification of polyvinylchloride with biocompatible and extremely

hydrophilic polyvinylpyrrolidone polymer using a simple and effective coating

technology in the presence of water. Polyvinylpyrrolidone is a very biocompatible

polymer which has been used as a blood substitute and a hydrogel building blocks

for years [43,44]. Introducing this polymer onto the surface of medical devices would

no doubt enhance their anti-fouling properties.

In terms of preventing bacterial infection, another approach is to create anti-

microbial surfaces by chemically linking antibacterial compounds onto the surfaces,
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which allows the attached compounds to kill or inhibit bacteria by simple contact.

This strategy is thought to be unique in preventing long-term disinfection and

reducing the risk for formation of antibiotic-resistant bacteria [45–49]. It is believed to

one of the most effective strategies. Due to the fact that quaternary ammonium salts

can be simply derivatized and easily incorporated into a polymer, their derivatives

have been widely and extensively studied for contact-mediated microbial inhibition

[45–48]. However, it was reported that interactions between quaternary ammonium

salts and proteins can reduce antimicrobial effectiveness [36,37]. Not long ago it has

been found that the derivatized 2(5H)-furanone compounds exhibited significant anti-

bacterial functions without proteins interference [38]. It has been validated this anti-

bacterial effect on dental restoratives [49,50]. These derivatives were covalently linked

to dental polymers or dental composites, resulting in killing bacteria or inhibiting

bacterial growth by simple contact but not via release or leaching [51, 52]. This

greatly reduces the potential cytotoxicity from the antibacterial derivatives to the

surrounding tissues. In these studies, it is also found that the modified restoratives

did not significantly interact with human saliva, limiting negative protein effects on

antibacterial functions [51,52] unlike quaternary ammonium salt-containing materials

[49,50].

1.2 Hypothesis and Objectives

It is our hypothesis that immobilizing the novel anti-fouling and biocompatible

polymers with and without antibacterial residues onto the surface of polyvinylchloride

via an effective and mild surface coating technique would provide a novel route for

surface modification to reduce cell/bacterial adhesion and bacterial infection. The

objectives of the study in this thesis were to:

1. Synthesize and characterize a novel anti-fouling and biocompatible polymer with

reduced cell/bacterial adhesion properties.
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2. Synthesize and characterize a novel anti-fouling and antibacterial polymer with

reduced cell/bacterial adhesion and antibacterial properties.

3. Modify the surface of polyvinylchloride with these polymers.

4. Evaluate the cell and bacterial adhesion of the coated polyvinylchloride.

5. Evaluate the antibacterial activity of the coated polyvinylchloride.

Chapter 2 primarily describes the process of synthesis, characterization,

immobilization and evaluation of the novel hydrophilic polymer with anti-fouling

properties onto the surface of polyvinylchloride. Chapter 3 primarily describes the

synthesis, characterization, immobilization and evaluation of the antibacterial and

anti-fouling polymer onto the polyvinylchloride surface. Cell adhesion, bacterial

adhesion and bacterial viability were examined.
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CHAPTER 2. COATING POLYVINYLCHLORIDE SURFACE FOR

IMPROVED ANTI-FOULING PROPERTY

2.1 Introduction

Anti-fouling surfaces are specifically crucial to cardiovascular applications. In this

study, a polyvinylchloride (PVC) surface was modified by a coating a biocompatible

and hydrophilic polymer by a mild coating technique. The PVC surface was first

activated and then functionalized, followed by coating with the polymer. Results

show that the coated hydrophilic polymer significantly reduced 3T3 fibroblast cell

adhesion as well as bacteria adhesion. The 3T3 cell adhesion to the polymer-coated

surface was reduced to 52-66% as compared to the original PVC surface. Bacterial

adhesion to the polymer-coated surface was reduced to 61-80% for Pseudomonas

aeruginosa, 65-81% for Staphylococcus aureus, and 73-85% for Escherichia coli, as

compared to the original PVC surface. It appears that this novel polymer-coated

PVC surface has an anti-fouling property.

2.2 Materials and Methods

2.2.1 Materials

N-vinylpyrrolidone (VP), acryloyl chloride, N-hydroxysuccinimide, triethylamine,

4-methoxyphenol, sodium carbonate, 2,2’-azobisisobutyronitrile (AIBN), sodium

azide, tetrabutylammonium bromide, propargyl alcohol, copper sulfate, sodium

ascorbate, 1,6-diisocyanatohexane, dibutyltin dilaurate, hexane, tetrahydrofuran,

N,N’-dimethylformamide and diethyl ether were used as received from Sigma-Aldrich

Co. (Milwaukee, WI) without further purifications. Polyvinylchloride (PVC) sheet

(0.5 mm thick) was received from Interstate Plastics (Sacramento, CA).
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2.2.2 Surface Coating

2.2.2.1 Synthesis of Functional Hydrophilic Polymer

Synthesis of N-acryloyl Succinimide. N-acryloyl succinimide (AS) was prepared

similarly to our previous publication [53]. In short, triethylamine (0.1 mol) in tetra-

hydrofuran was slowly added to a solution containing N-hydroxysuccinimide (0.1 mol),

acryloyl chloride (0.1 mol) and 4-methoxyphenol (0.1 mol% of acryloyl chloride) in

tetrahydrofuran. The reaction was carried out at 24 oC for 24 h and then the white

by-product triethylamine-hydrogen chloride was filtered. The final white solids (yield

= 93%) were obtained by removing tetrahydrofuran using a rotary evaporator and

drying in vacuo. The scheme for synthesis is shown in Fig. 2.1A.

Synthesis of Poly(VP-co-AS). To coat hydrophilic polyvinylpyrrolidone on PVC

surface, we incorporated a reactive moiety AS onto the polymer chain by co-

polymerization of VP with AS. Poly(VP-co-AS) or PVPA was prepared similarly

to our published procedures [51]. Briefly, AIBN (1% by mole) in N,N’-dimethylform-

amide was added to a solution containing VP and AS at a molar ratio of 95 to 5

in N,N’-dimethylformamide. After the reaction was conducted under N2 purging at

64 oC for 24 h, the polymer was precipitated with diethyl ether and then dried in

vacuo. The scheme for synthesis is also shown in Fig. 2.1B. The PVPA polymers

with different molar ratios of VP/AS (90/10 and 85/15) at the same AIBN, i.e., 1%

(by mole) and different initiator concentrations (0.5% and 3%) at the same molar

ratio (95/5) were prepared similarly to the procedures described above.

2.2.2.2 Surface Activation of PVC

PVC sheet was cut into disks 7 mm in diameter. Then disks were placed in a

container with sodium azide (20%, w/v), tetrabutylammonium bromide (2%, w/v)

and 10 mL distilled water with stirring. After running the reaction at 80 oC for

7 h, the disks (designated as AZ) were washed three times with distilled water,
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followed by placing in a container with propargyl alcohol (16%), copper sulfate

(2%), tetrabutylammonium bromide (1%), sodium ascorbate (0.5%) and distilled

water (15 mL). The reaction was conducted at 50 oC for 3 h and then washed

three times with distilled water, to form disks (designated as PA) having hydroxyl

groups on the surface. The modified PVC disks were then placed in a container

with 1,6-diisocyanatohexane (20%), dibutyltin dilaurate (1%) and hexane (10 mL)

with stirring. After running the reaction at 40 oC for 1.5 h, the disks (designated

as IC) were washed with hexane three times, followed by placing in a container with

sodium carbonate and distilled water. After soaking at 24 oC overnight, the disks

were washed three times with distilled water and then dried in vacuo before the next

steps. The disks (designated AM) were finally modified with amino groups on the

surface, as shown in Fig. 2.1C.

2.2.2.3 Surface Preparation with PVPA Polymers

10% (w/w) of PVPA polymer in distilled water was added to PBS (pH = 8.5)

[53, 54]. Then the amine-modified PVC disks were added upon dissolution of the

polymer. The reaction was conducted at 24 oC for 30 min, followed by washing the

modified disks three times with distilled water before evaluation. The scheme for

surface coating is shown in Fig. 2.1C.

2.2.3 Characterization

The synthesized polymer and surface-modified disks were characterized and

evaluated with Fourier transform-infrared (FT-IR) spectroscopy. The functional

groups of the modified PVC were identified by attenuated total reflectance FT-IR.

FT-IR spectra were acquired on a FT-IR spectrometer (Mattson Research Series

FT/IR1000, Madison, WI). The viscosity values of the synthesized polymers were

determined in DMF at 23 oC using a cone/plate viscometer (RVDV-II + CP,

Brookfield Eng. Lab. Inc., Middleboro, MA). To characterize whether amino groups
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A.
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where x : y = 95:5, 90:10 and 85:15.
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Fig. 2.1.: Schematic diagrams for synthesis of AS and PVPA and surface coating:

(A) synthesis of AS; (B) synthesis of PVPA; (C) surface coating
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and the synthesized polymers were attached onto the PVC surface, original and

modified PVC disks were soaked in a fluorescent green/red (1:1 v/v) dye mixture

(LIVE/DEAD BacLight bacterial viability kit L7007, Molecular Probes, Inc., Eugene,

OR, USA) in the dark for 15 min, followed by imaging with an inverted fluorescence

microscope (EVOS FL, AMG, Mill Creek, WA, USA).

2.2.4 Evaluation

2.2.4.1 Cell Adhesion Test

NIH-3T3 mouse fibroblasts were cultured in high glucose Dulbecco’s Modified

Eagle Medium (DMEM, Lonza) supplemented with 10% fetal bovine serum (FBS,

Invitrogen), 5 mg/mL penicillin and 5 mg/mL streptomycin (Invitrogen Inc.,

Singapore). After maintaining at 37 oC under a humidified atmosphere of 5% CO2

for 24 h, the cells were harvested from the culture flask by the addition of a 5.3 mM

trypsin-EDTA (ThermoFisher Scientific) solution in PBS and centrifuged at 1200 rpm

for 3 min, followed by removing trypsin and re-suspending the cell pellets in DMEM

medium supplemented with 10% FBS to a density of 5×104 cells/mL. The formed

cell suspension (1 mL) was then added to each well containing the disk specimen in a

24-well plate and cultured for 48 h, before the disk was washed with PBS to remove

non-adherent cells. The cells attached to the disk were harvested by the addition of

trypsin, followed by counting and imaging with an inverted microscope (Nikon Ti-E,

Melville, NY). Triplicate samples were used to obtain a mean value for each material.

2.2.4.2 Bacterial Adhesion Test

The bacterial adhesion test was conducted following published procedures with

slight modification [55]. Briefly, colonies of bacteria were suspended in 5 mL of tryptic

soy broth, supplemented with 1% sucrose, to make a suspension with 108 CFU/mL

of bacteria, and cultured for 24 h. Three bacterial species, Pseudomonas aeruginosa,
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Escherichia coli and Staphylococcus aureus, were assessed. After washing with 70%

ethanol for 10 s and sterile water three times, the disk specimen was incubated with

bacteria in tryptic soy broth at 37 oC for 24 h under 5% CO2. Then the disk was

rinsed with sterile PBS and de-ionized water to remove non-adherent bacteria. The

adhered bacteria were eluted from the surfaces by ultrasonic treatment in 1 ml sterile

PBS for 10 min. Bacterial CFU was enumerated by agar plate counts. Data represent

a mean value for each material based on triplicate samples.

2.2.4.3 Statistical Analysis

One-way analysis of variance (ANOVA) with the post hoc Tukey-Kramer multiple-

range test was used to determine significant differences of each measured property or

activity among the materials in each group. A level of α = 0.05 was used for statistical

significance.

2.3 Results and Discussion

2.3.1 Surface Coating and Characterization

Fig. 2.2 shows the FT-IR absorbance spectra data for PVPA polymer synthesis:

(1) VP, (2) AS and (3) PVPA. Comparing all three spectra, appearance of the two

small peaks at 1812 and 1782 for imide corresponds to 1805 and 1775 from AS,

appearance of the peak at 3450 for amide and imide corresponds to 3565 from VP

and 3590 from AS, appearance of the peak at 1703 for carbonyl group corresponds to

1713 from AS, appearance of the peak at 1664 for amide corresponds to 1654 on AS,

and disappearance of the peak at 1640 for carbon-carbon double bond corresponds

to 1628 from VP and 1638 from AS. These data confirmed the successful formation

of PVPA.

Fig. 2.3 shows the FT-IR absorbance spectra for PVC and modified PVC surfaces:

(1) PVC, (2) AZ, (3) PA, (4) IC, (5) AM, and (6) PVPA. In comparison with spectra
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Fig. 2.2.: FT-IR spectra for PVPA synthesis: (1) VP; (2) AS; (3) PVPA

(1) and (2), a strong new peak formation at 2104 for azido group confirmed that azido

groups were successfully attached onto the PVC surface by replacing some chlorine

groups. In comparison with spectra (2) and (3), the azido peak disappears and a broad

new peak between 3000 and 3700 appears, suggesting the hydroxyl group formation

on the PVC surface. Regarding spectra (3) and (4), a strong new peak formation at

3340 and 1650 for urethane group and at 2261 for isocyanate group confirmed that

isocyanate groups were successfully attached onto the PVC by the reaction between

hydroxyl and isocyanate groups. Regarding (4) and (5), a broad peak formation at

3400 and isocyanate group disappearance at 2261 confirmed the formation of amino

groups on the PVC surface. In the case of (5) and (6), it is hard to tell the difference

between the spectra; however, the significant difference was identified by the following

fluorescence image (Fig. 2.5) and cell and bacterial adhesion tests.
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Fig. 2.3.: FT-IR spectra for PVC surface coating: (1) PVC; (2) AZ; (3) PA; (4) IC;

(5) AM; (6) PVPA

Fig. 2.4 shows the viscosity of the synthesized PVPA polymers. It is known that

viscosity of polymer can be correlated to molecular weight (MW) of polymer, and

initiator concentration of polymerization affects MW of the formed polymer [56]. A

lower initiator concentration can produce a polymer with higher MW and a higher

viscosity value means a higher MW. PVPA1 showed the highest viscosity, followed by

PVPA2, PVPA5, PVPA4 and PVPA3. PVPA5, PVPA4 and PVPA2 were synthesized

using the same AIBN concentration (1%), whereas PVPA1 and PVPA3 were prepared

using 0.5% and 3% AIBN, respectively. Furthermore, PVPA1, PVPA2 and PVPA3

had the same VP/AS molar ratio (95/5). It is known that higher the viscosity of the

polymer, higher the molecular weight it has [56]. Therefore, it is plausible that the

polymer PVPA1 with the lowest initiator concentration showed the highest viscosity
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Fig. 2.4.: Viscosity of the synthesized PVPA polymers

or highest MW, followed by PVPA2 and PVPA3. The polymers PVPA2, PVPA4 and

PVPA5 were close to each other in their viscosities, because they were polymerized

under the same AIBN concentration.

2.3.2 Evaluation

Surface modification is very critical to polymer-based medical devices such as

cardiovascular grafts, catheters and others, especially when they are used for the

areas in association with body fluid or blood [2,57]. The devices being used in these

applications require minimum microbial adhesion and low cell attachment [2,13]. To

achieve this goal, we propose to modify the surface using a newly synthesized hydro-

philic and biocompatible polymer containing N-vinylpyrrolidone residue. It is well

known that polyvinylpyrrolidone polymer (PVP) is a very hydrophilic biocompatible

polymer and has been used as a blood compatible polymer and a blood substitute for

many years [43,44]. In this study, we used a very efficient and mild coating technique,

i.e., using N-acryloyl succinimide (AS) which is pendent on PVPA to covalently link



14

PVPA onto the amino-containing PVC surface in the presence of water at pH =

8.0 [53, 54]. This technique has been widely used in protein coupling reaction in

biology and biomedical applications [58]. The reaction was accomplished between

amino groups on the PVC surface and acryloyl succinimide groups on the PVPA

polymer by forming amide linkages, concurrent with losing N-hydroxysuccinimide in

water. Fig. 2.5 (a-d) shows a set of optical images to demonstrate that both amino

groups and PVPA-coated polymers have been successfully attached onto the PVC

surface. The images in Fig. 2.5 (a-d) represent PVC and AZ-, AM- and PVPA-

modified surfaces after staining with a green/red two-color dye kit. It is known that

the fluorescent green dye emits the green color based on the reaction between dye

molecules and amino groups [59]. Since both PVC and AZ had no amino groups

attached, the expected black color is observed (Fig. 2.5a and Fig. 2.5b). On the

other hand, both AM- and PVPA-modified surface showed fluorescent green color

because both contain amino groups (Fig. 2.5c and Fig. 2.5d). It is noticed that the

surface attached with PVPA showed a significant white color coating on the green

surface, indicating successful completion of polymer coating.

Fig. 2.6 shows the effect of the hydrophilic PVPA polymers on cell surface

adhesion by 3T3 mouse fibroblasts. The cell adhesion was in the decreasing order

of PVC > AZ > AM > PVPA5 > PVPA4 > PVPA3 > PVPA2 > PVPA1 > PA,

where there were no statistically significant differences between PVPA1 and PVPA2

and among PVPA3, PVPA4 and PVPA5 (p > 0.05). It is known that hydrophobic

surfaces have higher affinity to proteins, cells and even bacteria [1, 57]. PVC is a

very hydrophobic or biofouling material. The modified AZ and AM showed 14% and

39% cell adhesion reduction, respectively, as compared to original PVC, probably due

to significant decreased hydrophobility. Azido functionality is known for its polarity

whereas amino group is hydrophilic. By looking at the results for the surfaces modified

with the PVPA polymers, an even more dramatic change is observed. The reduction

in cell adhesion is observed from 52 to 66% with different polymers. Although it

is not significant, there seems to be a trend on the synthesized polymers: (1) the
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(a) PVC

	

(b) AZ

	

(c) AM

	

(d) PVPA2

	

(e) PVC

	

(f) AZ

	

(g) AM

	

(h) PVPA2

Fig. 2.5.: Optical photomicrographs of PVC and its modified surfaces after staining

with fluorescent dye kit (LIVE/DEAD BacLight) (a to d) and cell images of 3T3

mouse fibroblasts after incubating with original and modified PVC surfaces (e to h)
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polymer synthesized with a lower initiator concentration showed a lower adhesion,

which may be explained by molecular weight of the polymers. High molecular weight

of the polymer means longer polymer chain. Longer hydrophilic polymer chains may

exert steric repulsion effects for enhanced cell exclusion [60]; (2) the more PVP on the

surface the lower the cell adhesion, e.g., PVPA2 < PVPA5 < PVPA6 in cell adhesion;

(3) AM also showed lower cell adhesion than original PVC, due to its hydrophilic

amino group. Surprisingly PA showed the lowest cell adhesion with 82% reduction as

compared to original PVC. This may be attributed to the well distributed hydroxyl

groups on the surface.
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Fig. 2.6.: 3T3 mouse fibroblast adhesion on original and modified PVC surfaces

with different coatings

Fig. 2.5 (e-f) also show a set of photomicrographs of original PVC and modified

PVC surfaces with 3T3 mouse fibroblasts adhesion, corresponding to the result from

Fig. 2.6. The images from Fig. 2.5 e to h represent PVC, AZ, PA, AM and PVPA2.

Apparently, the image of original PVC is almost full of cells among which many have

an elongated and spindle shape (Fig. 2.5e). With both AZ and AM, the reduced

cell numbers are observed with the latter being more significant (Fig. 2.5f and 2.5g).
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Fig. 2.7.: Bacterial adhesion on original and modified PVC surfaces with different

coatings
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For the PVPA-coated PVC, adhered cell numbers were more reduced with only a few

attached 3T3 fibroblasts observed on the image (Fig. 2.5h). The results were pretty

consistent with those cell adhesion number values shown in Fig. 2.6.

Fig. 2.7 shows the effect of the PVPA polymers on surface bacterial adhesion.

P. aeruginosa, E. coli, and S. aureus were investigated, as shown in Fig. 2.7 a, b

and c, respectively. Bacterial adhesion exhibited a pattern similar to that of 3T3

fibroblast adhesion shown in Fig. 2.6. After 24 h incubation with bacteria, original

PVC and its modified surfaces were evaluated. From Fig. 2.7, if we take original PVC

as 100% bacterial adhesion, the bacterial adhesion was in the decreasing order of (1)

P. aeruginosa: PVC > AZ > AM > PA > PVPA5 > PVPA3 > PVPA4 = PVPA2

> PVPA1, where there were no statistically significant differences among PVPA2,

PVPA3, PVPA4 and PVPA5 (p > 0.05); (2) E. coli : PVC > AZ > AM > PA >

PVPA5 > PVPA3 > PVPA4 > PVPA2 > PVPA1, with no statistically significant

differences between PA and AM as well as PVPA2 and PVPA1, and among PVPA3,

PVPA4 and PVPA5; (3) S. aureus : PVC > AZ > AM > PA > PVPA5 > PVPA4 >

PVPA3 = PVPA1 > PVPA2, where there were no statistically significant differences

among PA, PVPA4 and PVPA5, PVPA1, PVPA2 and PVPA3, as well as PVPA1,

PVPA3 and PVPA4. S. aureus showed bacterial adhesion reduction of 22% for AZ,

61% for PA, 46% for AM, and 65 to 81% for the PVPA-coated surfaces. P. aeruginosa

showed adhesion reduction of 18% for AZ, 45% for PA, 28% for AM, and 61 to 80%

for the PVPA-coated surfaces. E. coli showed adhesion reduction of 12% for AZ,

37% for PA, 33% for AM, and 73 to 85% for the PVPA-coated surfaces. It seems

that PVPA affected E. coli slightly more than S. aureus and P. aeruginosa. PVC

is a highly hydrophobic polymer so it showed the highest bacterial adhesion. The

azido-modified PVC (AZ) showed reduced bacterial adhesion, indicating that the

azido group is more hydrophilic than original PVC probably due to high polarity of

azido group. After the azido was converted to hydroxyl group, the bacterial adhesion

was reduced much more due to the hydrophilic nature of the hydroxyl group. When

hydroxyl groups were converted to amino groups, bacterial adhesion appeared to
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be increased. This can be attributed to the introduction of hydrophobic six-carbon

chain due to incorporation of 1,6-diisocyanatohexane, a necessary coupling agent, to

allow PVPA to attach onto the PVC surface. Regarding the PVPA-modified surfaces,

the bacterial adhesion was further reduced. All the polymer-coated surfaces showed

significantly reduced bacterial adhesion, with PVPA1 which has the highest viscosity

or highest MW exhibiting the lowest adhesion. The results shown in this study exhibit

a new route to prepare the PVC surface with anti-fouling property.

2.4 Conclusions

In this study we have successfully modified the surface of polyvinylchloride by

using a novel efficient and mild surface coating technique. The hydrophilic polymer-

coated PVC surfaces significantly reduced 3T3 fibroblast cell adhesion as well as

adhesion of three bacterial species. The 3T3 cell adhesion to the polymer-coated

surface was reduced to 52-66% as compared to the original PVC. Bacterial adhesion

to the polymer-coated surface was reduced 61-80% for P. aeruginosa, 65-81% for S.

aureus, and 73-85% for E. coli, as compared to original PVC. Molecular weight of

the coated polymer slightly enhances anti-fouling property. The more hydrophilic the

polymer is on the PVC surface, the lower the cell adhesion will be. Future work will

focus on further improvement of anti-fouling property and antibacterial property and

quantitative characterization of the coated polymer on surface.
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CHAPTER 3. A MODIFIED POLYVINYLCHLORIDE SURFACE

WITH ANTIBACTERIAL AND ANTI-FOULING FUNCTIONS

3.1 Introduction

Surfaces with antibacterial and hydrophilic properties are very attractive to cardio-

vascular applications. The objective of this study was to synthesize and immobilize

a novel antibacterial and hydrophilic polymer onto surface of polyvinylchloride

via an effective and mild surface coating technique. The surface coated with

a terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-2(5H)-

furanone derivative and succinimide residue was evaluated with cell adhesion,

bacterial adhesion and bacterial viability. 3T3 mouse fibroblast cells and two

bacterial species were used to evaluate surface adhesion and antibacterial activity.

Results showed that the polymer-modified polyvinylchloride surface exhibited not

only significantly decreased 3T3 fibroblast cell adhesion with a 66-87% reduction but

also significantly decreased bacterial adhesion with 69-87% and 52-74% reduction

of Pseudomonas aeruginosa and Staphylococcus aureus attachment, respectively, as

compared to original polyvinylchloride. Furthermore, the modified polyvinylchloride

surfaces exhibited significant antibacterial functions by inhibiting bacterial growth

(75-84% and 78-94% inhibition of Pseudomonas aeruginosa and Staphylococcus

aureus, respectively, as compared to original polyvinylchloride) and killing bacteria.

These results demonstrate that covalent polymer attachment conferred anti-fouling

and antibacterial properties to the polyvinylchloride surface.
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3.2 Materials and Methods

3.2.1 Materials

Acryloyl chloride, N-hydroxysuccinimide, triethylamine, 4-methoxyphenol, 2-

hydroxyethyl acrylate, 3,4-dichloro-5-hydroxy-2(5H)-furanone, p-toluenesulfonic acid,

toluene, 4-methoxyphenol, sodium azide, tetrabutylammonium bromide, 1,6-di-

isocyanatohexane, propargyl alcohol, dibutyltin dilaurate, 2,2’-azobisisobutyronitrile,

N-vinylpyrrolidone (NVP), poly(ethyleneimine) (PEI), tetrahydrofuran, dimethyl-

formamide, diethyl ether, copper sulfate, sodium ascorbate, sodium chloride,

anhydrous magnesium sulfate and sodium bicarbonate were used as received from

Sigma-Aldrich Co. (Milwaukee, WI) without further purifications. Polyvinylchloride

(PVC) sheet (0.5 mm thick) was received from Interstate Plastics (Sacramento, CA).

3.2.2 Surface Modification

3.2.2.1 Synthesis of Functional Antibacterial Hydrophilic Polymer

Synthesis of functional antibacterial hydrophilic polymer was carried out in three

steps, i.e., synthesis of N-succinimidyl acrylate (SA), synthesis of 5-acryloylethylene-

glycol-3,4-dichloro-2(5H)-furanone (ADCF) and synthesis of poly(NVP-ADCF-SA) or

PVDCS. (1) Synthesis of SA: SA was synthesized similarly to our previous publication

[53]. In short, acryloyl chloride (0.1 mol) was slowly added to a solution contain-

ing N-hydroxysuccinimide (0.1 mol), triethylamine (0.1 mol), 4-methoxyphenol (0.1

mol% of triethylamine) and tetrahydrofuran. The reaction was conducted at 23

oC for 24 h and the by-product triethylamine-hydrogen chloride was filtered. The

product, white solid, was recovered after removing tetrahydrofuran with a rotary

evaporator and drying in vacuo. (2) Synthesis of ADCF: ADCF was prepared

based on the published protocol in principle with some modification [51]. Briefly, a

mixture of 3,4-dichloro-5-hydroxy-2(5H)-furanone (0.1 mol), 2-hydroxyethyl acrylate

(0.12 mol), 4-methoxyphenol (0.1 mol %), toluene and p-toluenesulfonic acid (2



22

mol %) was refluxed at 100-110 oC for 3-4 h. After toluene was removed via the

rotary evaporator, the recovered crude product ADCF was dissolved in diethyl ether,

washed with saturated sodium bicarbonate solution, brine and distilled water, and

dried with anhydrous magnesium sulfate, followed by removing solvent by the rotary

evaporator. (3) Synthesis of PVDCS: PVDCS was polymerized similarly to our

published procedures [51]. Briefly, 2,2’-azobisisobutyronitrile (1% by mole) was added

to a solution containing N-vinylpyrrolidone, ADCF and SA at a molar ratio of 87/2/8,

82/10/8, 77/15/8 or 72/20/8 in N,N’-dimethylformamide. After the reaction was

carried out under a N2 blanket at 64 oC for 24 h, the PVDCS polymer was purified

with diethyl ether and dried in vacuo. The scheme for synthesis is shown in Fig.

3.1A.

3.2.2.2 Surface Modification of Polyvinylchloride

Polyvinylchloride (PVC) sheet was cut into 7-mm diameter disks. Then disks were

placed in a container with sodium azide (20%, w/v), tetrabutylammonium bromide

(2% w/v) and 10 ml distilled water with stirring [41]. After running the reaction

at 80 oC for 7 h, the disks were washed three times with distilled water (formation

of PVC with azido groups: PVCN3), followed by placing them in a container with

propargyl alcohol (16%), copper sulfate (2%), tetrabutylammonium bromide (1%),

sodium ascorbate (0.5%) and distilled water (15 ml). The reaction was conducted at

50 oC for 3 h and then the disks were washed three times with distilled water, resulting

in the disks having hydroxyl groups on the surfaces (formation of PVC with hydroxyl

groups: PVCPA). The modified PVC disks were then placed in a container with 1,6-

diisocyanatohexane (20%), dibutyltin dilaurate (1%) and hexane (10 ml) with stirring.

After running the reaction at 40 oC for 1.5 h, the disks were washed three times with

hexane (formation of PVC with isocyanate group: PVCNCO), followed by placing

them in a container with 5% PEI solution. After coating at 23 oC overnight, the

disks were washed three times with distilled water (formation of PVC coated with PEI
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having amino groups on the surface: PVCPEI) and then dried in an oven. Finally the

antibacterial and hydrophilic PVDCS polymer was coated onto the PVCPEI surface.

Briefly, 10% (wt/wt) of the synthesized PVDCS in distilled water was added to a

solution containing buffer (pH = 8.5) and acetone (1:1 v/v) [54]. Then the amine-

modified PVC disks were added upon dissolution of the polymer. The reaction was

conducted at 24 oC for 30 min, followed by washing the modified disks three times

with distilled water before evaluation. The scheme for modification is shown in Fig.

3.1B.

3.2.3 Characterization

The synthesized polymer and surface-modified disks were characterized and

evaluated with Fourier transform-infrared (FT-IR) spectroscopy. The surface

functional groups of the modified PVC were characterized with attenuated total

reflectance FT-IR. FT-IR spectra were acquired on a FT-IR spectrometer (Mattson

Research Series FT/IR1000, Madison, WI).

3.2.4 Evaluation

3.2.4.1 Cell Adhesion Test

NIH-3T3 mouse fibroblasts were cultured in high glucose Dulbecco’s Modified

Eagle Medium (DMEM, Lonza) supplemented with 10% fetal bovine serum (FBS,

Invitrogen), 5 mg/ml penicillin and 5 mg/ml streptomycin (Invitrogen Inc.,

Singapore). After maintaining at 37 oC under a humidified atmosphere of 5% CO2

for 24 h, the cells were harvested from the culture flask by the addition of a 5.3 mM

trypsin-EDTA (ThermoFisher Scientific) solution in PBS and centrifuged at 1200 rpm

for 3 min, followed by removing trypsin and re-suspending the cell pellets in DMEM

medium supplemented with 10% FBS to a density of 5×104 cells/mL. The formed

cell suspension (1 mL) was then added to each well containing the disk specimen in a
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24-well plate and cultured for 48 h, before the disk was washed with PBS to remove

non-adherent cells. The cells attached to the disk were harvested by the addition of

trypsin, followed by counting and imaging with an inverted microscope (Nikon Ti-E,

Melville, NY). Triplicate samples were used to obtain a mean value for each material.

3.2.4.2 Bacterial Adhesion Test

The bacterial adhesion test was conducted following the published procedures

with slight modification [55]. In short, colonies of bacteria were suspended in 5

mL of tryptic soy broth, supplemented with 1% sucrose, to form a suspension with

108 CFU/mL of bacteria and cultured for 24 h. P. aeruginosa and S. aureus were

assessed. After washing with 70% ethanol for 10 s and sterile water three times, the

disk specimen was incubated with bacteria in tryptic soy broth at 37 oC for 24 h

under 5% CO2. Then the disk was rinsed with sterile PBS and de-ionized water to

remove non-adherent bacteria. The adhered bacteria were eluted from the surfaces by

ultrasonic treatment in 1 ml sterile PBS for 10 min. Bacterial CFU was enumerated by

agar plate counts. Data represent a mean value for each material based on triplicate

samples.

3.2.4.3 Bacterial Viability Test

The bacterial viability test was carried out based on the protocol elsewhere [61].

In short, bacterial colonies were suspended in 5 mL of tryptic soy broth, supplemented

with 1% sucrose, to form a suspension with 108 CFU/mL of bacteria and incubated

for 24 h. Both P. aeruginosa and S. aureus were assessed. The disk specimen was

sterilized with 70% ethanol for 10 s and incubated with the bacterial suspension in

tryptic soy broth at 37 oC for 48 h under 5% CO2. To 1 mL of the above bac-

terial suspension, 3 µL of a green/red (1:1 v/v) dye mixture (LIVE/DEAD BacLight

bacterial viability kit L7007, Molecular Probes, Inc., Eugene, OR, USA) was added,

followed by vortexing for 10 s, sonicating for 10 s, vortexing for another 10 s and
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keeping in dark for about 15 min before analysis. Then 20 µL of the stained bac-

terial suspension was added onto a glass slide and viable bacteria (green) were imaged

with an inverted fluorescence microscope (EVOS FL, AMG, Mill Creek, WA, USA).

A bacteria suspension without disks was used as control and viable bacteria counts

form the suspension were used as 100%. The viability was analyzed by counting from

the recorded images. Triplicate samples were used to obtain a mean value for each

material.

3.2.4.4 Statistical Analysis

One-way analysis of variance (ANOVA) with the post hoc Tukey-Kramer multiple-

range test was used to determine significant differences of each measured property or

activity among the materials in each group. A level of α = 0.05 was used for statistical

significance.

3.3 Results and Discussion

3.3.1 Characterization

Fig. 3.2 shows a set of FT-IR spectra for SA (a), ADCF (b), NVP (c) and PVDCS

(d). In comparison with all the four spectra, the peaks around 1620-1655 for C=C

group disappear in spectrum d, which corresponds to those at 1652 and 1629 for

SA from spectrum a, 1639 for ADCF from spectrum b as well as 1629 for NVP from

spectrum c. A broader and stronger peak at 3200 for amide group appears in spectrum

d, which corresponds to that for NVP from spectrum c. Two small peaks at 1805

and 1778 for succinimidyl group (amide I) appear in spectrum d, which corresponds

to the peaks at 1805 and 1776 for SA from spectrum a. A small peak at 750 for C-Cl

group appears in spectrum d, which corresponds to that for ADCF from spectrum b.

These changes confirmed the PVDCS formation.
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Fig. 3.2.: FT-IR spectra for synthesized PVDCS: (a) SA; (b) ACDF; (c) NVP; (d)

PVDCS

Fig. 3.3 shows a set of FT-IR spectra for PVC (a), PVCN3 (b), PVCPA (c),

PVCNCO (d) and PVCPEI (e). In comparison with spectra a and b, the appearance

of a strong new peak at 2104 for azido group confirmed that azido groups were

successfully attached onto the PVC surface by replacing some chlorine groups. By

comparing spectra b and c, the azido peak disappeared and a broad new peak

appeared between 3000 and 3700, indicating the hydroxyl group formation on the

PVC surface. In comparison with spectra c and d, the appearance of new peaks at

3340 and 1650 for urethane group and at 2261 for isocyanate group confirmed that

isocyanate groups were successfully attached onto the PVC surface by the reaction

between hydroxyl and isocyanate groups. In comparison with d and e, appearance of
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a broad peak at 3400 and disappearance of isocyanate group at 2261 confirmed the

successful coating of PEI on the PVC surface.

e.

d.

c.

b.

a.

Fig. 3.3.: FT-IR spectra for PVC surface modification: (a) PVC (b) PVCN3; (c)

PVCPA; (d) PVCNCO; (e) PVCPEI

3.3.2 Evaluation

The medical devices being used in cardiovascular applications require minimum

microbial adhesion and low cell attachment [2, 13, 57]. To achieve this, we proposed

to coat the surface by using a newly prepared polymer containing both hydrophilic

and antibacterial moieties, which not only can prevent mammalian cell adhesion

but also reduce or prevent bacteria from infection. We applied a very simple and

effective coupling technique that has been broadly applied for protein coupling,
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i.e., coupling carboxyl with primary amino groups in water at pH = 8.0 with N-

hydroxysuccinimide [53,54].

It is well known that medical device-associated microbial infections are the most

popular problems for the implantation. These infections are associated with almost

each type of medical device. The examples include but not limited to catheters,

vascular grafts and ureteral stents. The research concepts on killing or inhibiting

bacteria by touch or simple contact has attracted a special attention recently [45–49].

The quaternary ammonium salts and their derivatives, due to their potent anti-

microbial functions, have been studied extensively and used for a number of bio-

medical and pharmaceutical applications [45–48]. On one hand, these materials

have shown capability of inhibiting and/or killing those bacteria that demonstrate

resistance to cationic antibacterial compounds [13]. On the other hand, however,

these potent compounds have also shown some weakness while interacting with

proteins such as human saliva. It was reported that oral saliva can significantly

and negatively affect the antibacterial activity of these compounds. It has been

attributed to electrostatic interactions between these quaternary ammonium salts

and proteins in saliva [49, 50]. Another type of new antimicrobial compounds,

furanone-containing molecules, have been reported to show a broad spectrum of

biological and physiological properties including but not limited to antibiotic, anti-

tumor, haemorrhagic and insecticidal activities [43, 44, 62] although their biological

mechanisms are still under investigation [63]. Our previous studies using the 3,4-

dichloro-5-hydroxy-2(5H)-furanone-containing polymer-composed dental composites

have been found effective in inhibiting the growth of the oral bacterium Streptococcus

mutans [51, 52] To explore the application of 3,4-dichloro-5-hydroxy-2(5H)-furanone

in surface modification research, we proposed to introduce 3,4-dichloro-5-hydroxy-

2(5H)-furanone through a polymerizable molecule 2-hydroxyethyl methacrylate via

a covalent bond linkage into the hydrophilic PVDCS, covalently link the PVDCS to

the activated PVC surface, and investigate the effect of the attached polymer on

anti-fouling and antibacterial functions of the modified surface. The discussion below
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demonstrates how the attached PVDCS polymers affected the surface antibacterial

and cell adhesion functions.

Fig. 3.4 shows the effect of the PVDCS polymers on cell surface adhesion by 3T3

mouse fibroblasts. The cell adhesion was in the decreasing order of PVC > PVCN3

> PVCPA > PEI > PVDCS72208 > PVDCS77158 > PVDCS82108 > PVDCS8758

(p < 0.05). It is known that a hydrophobic surface has higher affinity to proteins,

cells and even bacteria [1,57]. PVC is a very hydrophobic or biofouling material. The

modified PVCN3, PVCPA and PVCPEI showed significantly reduced cell adhesion

(24%, 40% and 55% reduction, respectively, as compared to original PVC), probably

due to significantly decreased hydrophobicity. Azido group is known for its polarity.

Both hydroxyl groups on PVCPA and amino groups on PVCPEI are hydrophilic. The

surfaces modified with the antibacterial and hydrophilic polymers exhibit a further

significant decrease in adhesion: PVDCS72208, PVDCS77158, PVDCS82108 and

PVDCS8758 exhibited 66%, 70%, 80% and 87% cell adhesion reduction, respectively.

The individual components of PVDCS each possess qualities contributing to overall

functionality. NVP is very hydrophilic monomer and its formed polymers have been

used for blood substitutes for years due to their excellent blood-compatibility [43,44].

ADCF exhibits antimicrobial and antitumor functions [62]. SA has been used for

coupling amino groups with carboxyl groups in protein chemistry [58]. PVDCS8758

represents a molar ratio of 87/5/8 for NVP/ADCF/SA, which contains the highest

ratio of NVP (hydrophilic component) and lowest ratio of ACDF (antibacterial

component) whereas PVDCS72208 contains the lowest hydrophilic component but

the highest antibacterial component. Apparently the more NVP on the surface the

lower the surface adhesion of the 3T3 cells.

Fig. 3.5 shows the effect of the PVDCS polymers on surface bacterial adhesion.

Two bacterial species were investigated. Bacterial adhesion exhibited a pattern

similar to that of 3T3 fibroblast adhesion, as shown in Fig. 3.4. After 24 h

incubation with bacteria, PVC and its modified surfaces were evaluated, considering

adhesion to PVC as 100%. We found that bacteria attached to the disks in the
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Fig. 3.4.: 3T3 mouse fibroblast adhesion on PVC and surface-modified PVC with

different polymer coatings

following decreasing order: PVC > PVCN3 > PVCPA > PVCPEI > PVDCS72208

> PVDCS77158 > PVDCS82108 > PVDCS8758. The modified surfaces showed

a significant bacterial adhesion reduction of 21%, 42%, 57%, 87%, 80%, 73% and

69% with P. aeruginosa and 16%, 32%, 45%, 74%, 67%, 60% and 52% with S.

aureus for PVCN3, PVCPA, PVCPEI, PVDCS8758, PVDCS82108, PVDCS77158

and PVDCS77208, respectively, as compared to original PVC. In addition, S. aureus

showed higher adhesion than P. aeruginosa. Again, PVC is a highly hydrophobic

polymer and that is likely why it showed the highest bacterial adhesion. The azido-

modified PVC showed reduced bacterial adhesion, indicating that the azido group is

more hydrophilic than PVC. After the azido group was converted to hydroxyl group

and then amino group, the bacterial adhesion was further reduced due to hydrophilic

nature of both hydroxyl and amino groups. The PVDCS-modified PVC displayed

further reduced bacterial adhesion. Similar to the results shown in Fig. 3.4, the one

with the highest content of NVP (PVDCS8758) showed the lowest bacterial adhesion

but the one with highest ADCF showed the highest bacterial adhesion, although

the adhesion value was still significantly lower than for PVC, PVCN3, PVCPA and

PVCPEI.
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Fig. 3.5.: Bacterial adhesion on PVC and surface-modified PVC with different

polymer coatings: (1) P. aeruginosa and (2) S. aureus

Fig. 3.6 shows the effect of the PVDCS polymers on viability of two bacterial

species in the supernatant above the disks. Bacterial viability in the presence of

the disk was found in the following decreasing order: PVC > PVCN3 > PVCPA

> PVCPEI > PVDCS8758 > PVDCS82108 > PVDCS77158 > PVDCS72208. S.

aureus showed lower viability than P. aeruginosa. Although PVCN3, PVCPA and

PVCPEI did not contain any antibacterial residues, they still showed significantly

decreased P. aeruginosa viability with reduction of 24%, 62% and 65% for PVCN3,

PVCPA and PVCPEI and S. aureus viability with reduction of 23%, 42% and 55%

for PVCN3, PVCPA and PVCPEI, as compared to original PVC. The result suggests

that PVCN3, PVCPA and PVCPEI have some type of bacterial inhibition capability.

It was reported that PVCN3 showed bacterial inhibition activity [41]. The amine-

containing polymers such as polyimine and polylysine were also reported to have

antibacterial function [64, 65]. The antibacterial activity exhibited by PVCPA can

be attributed to the triazole moieties produced from the reaction between acetylene

groups from propargyl alcohol and azido groups on PVCN3. The triazole moieties

have been found to have an antimicrobial activity and are incorporated to many

pharmaceutical formulations nowadays [66]. By comparing with PVCN3, PVCPA
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Fig. 3.6.: Bacterial viability after incubating with PVC and its surface-modified

PVC with different polymer coatings: (1) P. aeruginosa and (2) S. aureus

and PVCPEI, the surfaces modified with our antibacterial and hydrophilic polymers

exhibited a dramatic viability reduction. P. aeruginosa and S. aureus displayed

reduction values of 75% and 80% for PVDCS8758, 80% and 78% for PVDCS82108,

81% and 86% for PVDCS77158, and 84% and 94% for PVDCS72208, respectively,

as compared to original PVC. The result is plausible because the more antibacterial

component on the polymer or on the PVC surface, the lower the viability or higher

bacterial inhibition is observed. It was also noticed that S. aureus seems more

vulnerable to the PVDCS polymer than P. aeruginosa. These results suggest that

the polymer-coated surfaces can kill bacteria by contact.

Fig. 3.7 shows a set of photo-images of S. aureus viability after incubating with

original PVC and modified PVC disks. The images from Fig. 3.7a to Fig. 3.7h

represent (a) PVC, (b) PVCN3, (c) PVCPA, (d) PVCPEI, (e) PVDCS8758, (f)

PVDCS82108, (g) PVDCS77158 and (h) PVDBS72208. It is clear that original PVC

showed the highest numbers of bacteria (green dots), followed by PVCN3, PVCPA,

PVCPEI, PVDCS8758, PVDCS82108, PVDCS77158 and PVDCS72208. Nearly no

red bacteria (dead cells) are observed from Fig. 3.7a to Fig. 3.7d for PVC, PVCN3,

PVCPA and PVCPEI. On the other hand, however, red bacteria (dead cells) are
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Fig. 3.7.: Images of S. aureus after incubating with PVC and its surface-modified

PVC disks
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observed from Fig. 3.7e to Fig. 3.7h. The images of PVDCS72208 showed only a

few living bacteria cells (green) but more dead cells (red). The results are plausible

and can be explained below. Because PVCN3, PVCPA and PVCPEI did not contain

any antibacterial substances on the surfaces, they only inhibited bacterial growth

but did not actively kill bacteria. With the antibacterial and hydrophilic polymer-

coated PVC, however, not only bacteria growth were inhibited but also bacteria

were actively killed, which led to significantly reduced living bacteria numbers and

increased dead bacteria. Furthermore, increasing antibacterial component ADCF

on polymers further decreased the living bacteria and increased the dead bacteria.

Combining the results from Figs. 3.4, 3.5, 3.6 and 3.7, the PVDCS polymer-coated

PVC surfaces demonstrated an attractive anti-fouling property with significantly

decreased mammalian cell and bacterial adhesion. Meanwhile, the polymer-coated

surfaces also exhibited the capability of not only inhibiting bacterial growth but also

killing bacteria, which would enhance antimicrobial activity of PVC and may also

reduce the risk to bacterial infection due to insufficient sterilization.

3.4 Conclusions

We have successfully synthesized a novel anti-fouling and antibacterial polymer

and immobilized the polymer onto hydrophobic surface of polyvinylchloride. The

modified surface not only exhibited significantly reduced cell adhesion with a 66-

87% decrease to 3T3 fibroblast but also showed significantly decreased bacterial

attachment with 69-87% and 52-74% decrease to P. aeruginosa and S. aureus,

respectively, as compared to original PVC. Furthermore, the polymer-modified PVC

surface demonstrated significant antibacterial functions by inhibiting bacteria growth

with reduction of 75 to 84% to P. aeruginosa and 78 to 94% to S. aureus, as compared

to original PVC and killing bacteria as well. These results hold much promise in

preventing medical device-related infections or complications. Future studies will

focus on optimization of the polymers as well as preparation protocols.
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CHAPTER 4. CONCLUSIONS

We have successfully modified the surface of polyvinylchloride by using an

efficient and mild surface coating technique with polymers that either have only

anti-fouling properties or have both anti-fouling and antibacterial properties. The

coated polyvinylchloride with anti-fouling polymers showed significant reduction of

3T3 fibroblast cell adhesion as well as bacterial adhesion. The 3T3 cell adhesion

was reduced to 52-66% whereas bacterial adhesion of three different species was

reduced to 61-85% as compared to the original polyvinylchloride surface. The surface

coated with terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-

2(5H)-furanone derivative and succinimide residue showed a 66-87% reduction of 3T3

fibroblast cell adhesion, 69-87% and 52-74% reduction of Pseudomonas aeruginosa

and Staphylococcus aureus adhesion, respectively, as compared to polyvinylchloride.

This coating also showed significant antibacterial functions by inhibiting 75-84%

Pseudomonas aeruginosa growth and 78-94% Staphylococcus aureus growth, as

compared to original polyvinylchloride. The results of the two studies demonstrate

that the polymer coating by covalent attachment conferred bacterial prevention

properties to the polyvinylchloride surface that could reduce bacterial infections.
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