24 research outputs found

    Mortality prediction in chronic obstructive pulmonary disease comparing the GOLD 2015 and GOLD 2019 staging: a pooled analysis of individual patient data

    Get PDF
    In 2019, The Global Initiative for Chronic Obstructive Lung Disease (GOLD) modified the grading system for patients with COPD, creating 16 subgroups (1A–4D). As part of the COPD Cohorts Collaborative International Assessment (3CIA) initiative, we aim to compare the mortality prediction of the 2015 and 2019 COPD GOLD staging systems. We studied 17 139 COPD patients from the 3CIA study, selecting those with complete data. Patients were classified by the 2015 and 2019 GOLD ABCD systems, and we compared the predictive ability for 5-year mortality of both classifications. In total, 17 139 patients with COPD were enrolled in 22 cohorts from 11 countries between 2003 and 2017; 8823 of them had complete data and were analysed. Mean±sd age was 63.9±9.8 years and 62.9% were male. GOLD 2019 classified the patients in milder degrees of COPD. For both classifications, group D had higher mortality. 5-year mortality did not differ between groups B and C in GOLD 2015; in GOLD 2019, mortality was greater for group B than C. Patients classified as group A and B had better sensitivity and positive predictive value with the GOLD 2019 classification than GOLD 2015. GOLD 2015 had better sensitivity for group C and D than GOLD 2019. The area under the curve values for 5-year mortality were only 0.67 (95% CI 0.66–0.68) for GOLD 2015 and 0.65 (95% CI 0.63–0.66) for GOLD 2019

    Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease

    Get PDF
    Background: External validations and comparisons of prognostic models or scores are a prerequisite for their use in routine clinical care but are lacking in most medical fields including chronic obstructive pulmonary disease (COPD). Our aim was to externally validate and concurrently compare prognostic scores for 3-year all-cause mortality in mostly multimorbid patients with COPD. Methods: We relied on 24 cohort studies of the COPD Cohorts Collaborative International Assessment consortium, corresponding to primary, secondary, and tertiary care in Europe, the Americas, and Japan. These studies include globally 15,762 patients with COPD (1871 deaths and 42,203 person years of follow-up). We used network meta-analysis adapted to multiple score comparison (MSC), following a frequentist two-stage approach; thus, we were able to compare all scores in a single analytical framework accounting for correlations among scores within cohorts. We assessed transitivity, heterogeneity, and inconsistency and provided a performance ranking of the prognostic scores. Results: Depending on data availability, between two and nine prognostic scores could be calculated for each cohort. The BODE score (body mass index, airflow obstruction, dyspnea, and exercise capacity) had a median area under the curve (AUC) of 0.679 [1st quartile-3rd quartile = 0.655-0.733] across cohorts. The ADO score (age, dyspnea, and airflow obstruction) showed the best performance for predicting mortality (difference AUC(ADO) - AUC(BODE) = 0.015 [95% confidence interval (CI) = - 0.002 to 0.032]; p = 0.08) followed by the updated BODE (AUCBODE updated - AUCBODE = 0.008 [95% CI = -0.005 to +0.022]; p = 0.23). The assumption of transitivity was not violated. Heterogeneity across direct comparisons was small, and we did not identify any local or global inconsistency. Conclusions: Our analyses showed best discriminatory performance for the ADO and updated BODE scores in patients with COPD. A limitation to be addressed in future studies is the extension of MSC network meta-analysis to measures of calibration. MSC network meta-analysis can be applied to prognostic scores in any medical field to identify the best scores, possibly paving the way for stratified medicine, public health, and research

    Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications

    Get PDF
    BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients. OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs. DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification. PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries. MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes. RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure. CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome

    External validation and recalculation of the CODEX index in COPD patients::A 3CIAplus cohort study

    Get PDF
    The CODEX index was developed and validated in patients hospitalized for COPD exacerbation to predict the risk of death and readmission within one year after discharge. Our study aimed to validate the CODEX index in a large external population of COPD patients with variable durations of follow-up. Additionally, we aimed to recalculate the thresholds of the CODEX index using the cutoffs of variables previously suggested in the 3CIA study (mCODEX). Individual data on 2,755 patients included in the COPD Cohorts Collaborative International Assessment Plus (3CIA+) were explored. A further two cohorts (ESMI AND EGARPOC-2) were added. To validate the CODEX index, the relationship between mortality and the CODEX index was assessed using cumulative/dynamic ROC curves at different follow-up periods, ranging from 3 months up to 10 years. Calibration was performed using univariate and multivariate Cox proportional hazard models and Hosmer-Lemeshow test. A total of 3,321 (87.8% males) patients were included with a mean ± SD age of 66.9 ± 10.5 years, and a median follow-up of 1,064 days (IQR 25–75% 426–1643), totaling 11,190 person-years. The CODEX index was statistically associated with mortality in the short- (≀3 months), medium- (≀1 year) and long-term (10 years), with an area under the curve of 0.72, 0.70 and 0.76, respectively. The mCODEX index performed better in the medium-term (<1 year) than the original CODEX, and similarly in the long-term. In conclusion, CODEX and mCODEX index are good predictors of mortality in patients with COPD, regardless of disease severity or duration of follow-up

    Area under the curve (AUC) to predict 1, 3, 5, and 10-yr survival at different staging spirometry thresholds, dyspnea levels (mMRC) and time.

    No full text
    <p>GOLD: Global Obstructive Lung Disease classification. ATS: American Thoracic Society classification. BODE: Body Mass Index, Obstruction (measured with old ATS classification), Dyspnea and Exercise. mMRC: Dyspnea measured with the modified Medical Research Council scale.</p
    corecore