35 research outputs found

    The sign problem across the QCD phase transition

    Full text link
    The average phase factor of the QCD fermion determinant signals the strength of the QCD sign problem. We compute the average phase factor as a function of temperature and baryon chemical potential using a two-flavor NJL model. This allows us to study the strength of the sign problem at and above the chiral transition. It is discussed how the UA(1)U_A(1) anomaly affects the sign problem. Finally, we study the interplay between the sign problem and the endpoint of the chiral transition.Comment: 9 pages and 9 fig

    Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential

    Full text link
    We demonstrate analytically that complex Langevin dynamics can solve the sign problem in one-dimensional QCD in the thermodynamic limit. In particular, it is shown that the contributions from the complex and highly oscillating spectral density of the Dirac operator to the chiral condensate are taken into account correctly. We find an infinite number of classical fixed points of the Langevin flow in the thermodynamic limit. The correct solution originates from a continuum of degenerate distributions in the complexified space.Comment: 20 pages, several eps figures, minor comments added, to appear in JHE

    The QCD phase diagram at nonzero quark density

    Get PDF
    We determine the phase diagram of QCD on the \mu-T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N_t =6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.Comment: 12 pages, 6 figure

    QCD with Chemical Potential in a Small Hyperspherical Box

    Full text link
    To leading order in perturbation theory, we solve QCD, defined on a small three sphere in the large N and Nf limit, at finite chemical potential and map out the phase diagram in the (mu,T) plane. The action of QCD is complex in the presence of a non-zero quark chemical potential which results in the sign problem for lattice simulations. In the large N theory, which at low temperatures becomes a conventional unitary matrix model with a complex action, we find that the dominant contribution to the functional integral comes from complexified gauge field configurations. For this reason the eigenvalues of the Polyakov line lie off the unit circle on a contour in the complex plane. We find at low temperatures that as mu passes one of the quark energy levels there is a third-order Gross-Witten transition from a confined to a deconfined phase and back again giving rise to a rich phase structure. We compare a range of physical observables in the large N theory to those calculated numerically in the theory with N=3. In the latter case there are no genuine phase transitions in a finite volume but nevertheless the observables are remarkably similar to the large N theory.Comment: 44 pages, 18 figures, jhep3 format. Small corrections and clarifications added in v3. Conclusions cleaned up. Published versio

    Nuclear matter to strange matter transition in holographic QCD

    Full text link
    We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.Comment: 13 pages, 14 figure

    Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation

    Full text link
    We compare the effectiveness of two hypotheses, Natural Flavour Conservation (NFC) and Minimal Flavour Violation (MFV), in suppressing the strength of flavour-changing neutral-currents (FCNCs) in models with more than one Higgs doublet. We show that the MFV hypothesis, in its general formulation, is more stable in suppressing FCNCs than the hypothesis of NFC alone when quantum corrections are taken into account. The phenomenological implications of the two scenarios are discussed analysing meson-antimeson mixing observables and the rare decays B -> mu+ mu-. We demonstrate that, introducing flavour-blind CP phases, two-Higgs doublet models respecting the MFV hypothesis can accommodate a large CP-violating phase in Bs mixing, as hinted by CDF and D0 data and, without extra free parameters, soften significantly in a correlated manner the observed anomaly in the relation between epsilon_K and S_psi_K.Comment: 27 pages, 4 figures. v3: minor modifications (typos corrected and few refs. added), conclusions unchanged; journal versio

    Quark Number Susceptibility with Finite Chemical Potential in Holographic QCD

    Full text link
    We study the quark number susceptibility in holographic QCD with a finite chemical potential or under an external magnetic field at finite temperature. We first consider the quark number susceptibility with the chemical potential. We observe that approaching the critical temperature from high temperature regime, the quark number susceptibility divided by temperature square develops a peak as we increase the chemical potential, which confirms recent lattice QCD results. We discuss this behavior in connection with the existence of the critical end point in the QCD phase diagram. We also consider the quark number susceptibility under the external magnetic field. We predict that the quark number susceptibility exhibits a blow-up behavior at low temperature as we raise the value of the magnetic field. We finally spell out some limitations of our study.Comment: 25 pages, 3 figures, published versio

    A model study of quark number susceptibility at finite temperature beyond rainbow-ladder approximation

    Full text link
    In this paper we calculate the quark number susceptibility (QNS) of QCD at finite temperature under the rainbow-ladder and Ball-Chiu type truncation schemes of the Dyson-Schwinger approach. It is found that the difference between the result of the rainbow-ladder truncation and that of Ball-Chiu type truncation is small, which shows that the dressing effect of the quark-gluon vertex on the QNS at finite temperature is small. It is also found that at low temperature the quark number susceptibility is nearly zero and it increases sharply when the temperature approaches the chiral phase transition point. A comparison between the result in the present paper with those in the literature is made.Comment: 17 pages, 6 figure

    B-physics from Nf=2 tmQCD: the Standard Model and beyond

    Get PDF
    We present a lattice QCD computation of the b-quark mass, the B and B_s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for \xi and f_{Bq}\sqrt{B_i^{(q)}} extrapolated to the continuum limit and to the physical pion mass. We used N_f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m_b(m_b, \overline{\rm{MS}})=4.29(12) GeV, f_{Bs}=228(8) MeV, f_{B}=189(8) MeV and f_{Bs}/f_B=1.206(24). Moreover with our results for the bag-parameters we find \xi=1.225(31), B_1^{(s)}/B_1^{(d)}=1.01(2), f_{Bd}\sqrt{\hat{B}_{1}^{(d)}} = 216(10) MeV and f_{Bs}\sqrt{\hat{B}_{1}^{(s)}} = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B_{(s)}-\bar B_{(s)} mixing
    corecore