1,793 research outputs found

    Passive Aeroelastic Tailored Wing Modal Test Using the Fixed Base Correction Method

    Get PDF
    In modal testing and finite element model correlation, analysts desire modal results using free-free or rigid boundary conditions to ease comparisons of test versus analytical data. It is often expensive both in cost and schedule to build and test with boundary conditions that replicate the free-free or rigid boundaries. Static test fixtures for load testing are often large, heavy, and unyielding, but do not provide adequate boundaries for modal tests because they are dynamically too flexible and often contain natural frequencies within the frequency range of interest of the test article. Dynamic coupling between the test article and test fixture complicates the model updating process because significant effort is required to model the test fixture and boundary conditions in addition to the test article. If there were a way to correct the modal results for fixture coupling, then setups used for other structural testing could be adequate for modal testing. In the case described in this paper, a partial static loads testing setup was used, which allowed significant schedule and cost savings by eliminating a unique setup for a modal test. A fixed base correction technique was investigated during modal testing of a flexible wing cantilevered from part of a static test fixture. The technique was successfully used to measure the wing modes de-coupled from the dynamically active test fixture. The technique is promising for future aircraft applications, but more research is needed

    Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers

    Get PDF
    The emerging concept of psychobiotics—live microorganisms with a potential mental health benefit—represents a novel approach for the management of stress-related conditions. The majority of studies have focused on animal models. Recent preclinical studies have identified the B. longum 1714 strain as a putative psychobiotic with an impact on stress-related behaviors, physiology and cognitive performance. Whether such preclinical effects could be translated to healthy human volunteers remains unknown. We tested whether psychobiotic consumption could affect the stress response, cognition and brain activity patterns. In a within-participants design, healthy volunteers (N=22) completed cognitive assessments, resting electroencephalography and were exposed to a socially evaluated cold pressor test at baseline, post-placebo and post-psychobiotic. Increases in cortisol output and subjective anxiety in response to the socially evaluated cold pressor test were attenuated. Furthermore, daily reported stress was reduced by psychobiotic consumption. We also observed subtle improvements in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal midline electroencephalographic mobility following psychobiotic consumption. These subtle but clear benefits are in line with the predicted impact from preclinical screening platforms. Our results indicate that consumption of B. longum 1714 is associated with reduced stress and improved memory. Further studies are warranted to evaluate the benefits of this putative psychobiotic in relevant stress-related conditions and to unravel the mechanisms underlying such effects

    TADPOLE Challenge: Accurate Alzheimer's disease prediction through crowdsourced forecasting of future data

    Get PDF
    The TADPOLE Challenge compares the performance of algorithms at predicting the future evolution of individuals at risk of Alzheimer's disease. TADPOLE Challenge participants train their models and algorithms on historical data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Participants are then required to make forecasts of three key outcomes for ADNI-3 rollover participants: clinical diagnosis, ADAS-Cog 13, and total volume of the ventricles -- which are then compared with future measurements. Strong points of the challenge are that the test data did not exist at the time of forecasting (it was acquired afterwards), and that it focuses on the challenging problem of cohort selection for clinical trials by identifying fast progressors. The submission phase of TADPOLE was open until 15 November 2017; since then data has been acquired until April 2019 from 219 subjects with 223 clinical visits and 150 Magnetic Resonance Imaging (MRI) scans, which was used for the evaluation of the participants' predictions. Thirty-three teams participated with a total of 92 submissions. No single submission was best at predicting all three outcomes. For diagnosis prediction, the best forecast (team Frog), which was based on gradient boosting, obtained a multiclass area under the receiver-operating curve (MAUC) of 0.931, while for ventricle prediction the best forecast (team EMC1), which was based on disease progression modelling and spline regression, obtained mean absolute error of 0.41% of total intracranial volume (ICV). For ADAS-Cog 13, no forecast was considerably better than the benchmark mixed effects model (BenchmarkME), provided to participants before the submission deadline. Further analysis can help understand which input features and algorithms are most suitable for Alzheimer's disease prediction and for aiding patient stratification in clinical trials.Comment: 10 pages, 1 figure, 4 tables. arXiv admin note: substantial text overlap with arXiv:1805.0390

    Acute Dietary Nitrate Supplementation Improves Flow Mediated Dilatation of the Superficial Femoral Artery in Healthy Older Males

    Get PDF
    Aging is often associated with reduced leg blood flow, increased arterial stiffness, and endothelial dysfunction, all of which are related to declining nitric oxide (NO) bioavailability. Flow mediated dilatation (FMD) and passive leg movement (PLM) hyperaemia are two techniques used to measure NO-dependent vascular function. We hypothesised that acute dietary nitrate (NO3−) supplementation would improve NO bioavailability, leg FMD, and PLM hyperaemia. Fifteen healthy older men (69 ± 4 years) attended two experiment sessions and consumed either 140 mL of concentrated beetroot juice (800 mg NO3−) or placebo (NO3−-depleted beetroot juice) in a randomised, double blind, cross-over design study. Plasma nitrite (NO2−) and NO3−, blood pressure (BP), augmentation index (AIx75), pulse wave velocity (PWV), FMD of the superficial femoral artery, and PLM hyperaemia were measured immediately before and 2.5 h after consuming NO3− and placebo. Placebo had no effect but NO3− led to an 8.6-fold increase in plasma NO2−, which was accompanied by an increase in FMD (NO3−: +1.18 ± 0.94% vs. placebo: 0.23 ± 1.13%, p = 0.002), and a reduction in AIx75 (NO3−: −8.7 ± 11.6% vs. placebo: −4.6 ± 5.5%, p = 0.027). PLM hyperaemia, BP, and PWV were unchanged during both trials. This study showed that a dose of dietary NO3− improved NO bioavailability and enhanced endothelial function as measured by femoral artery FMD. These findings provide insight into the specific central and peripheral vascular responses to dietary NO3− supplementation in older adult

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant

    Get PDF
    Supernova remnants (SNRs) are believed to be the primary location of the acceleration of Galactic cosmic rays, via diffusive shock (Fermi) acceleration. Despite considerable theoretical work the precise details are still unknown, in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in, and affect the structure of, the SNR shocks. However, for the last ten years, X-ray observatories ASCA, and more recently Chandra, XMM-Newton, and Suzaku have made it possible to image the synchrotron emission at keV energies produced by cosmic-ray electrons accelerated in the SNR shocks. In this article, we describe a spatially-resolved spectroscopic analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the cutoff frequencies of electrons accelerated in the forward shock. We set upper limits on the electron diffusion coefficient and find locations where particles appear to be accelerated nearly as fast as theoretically possible (the Bohm limit).Comment: 18 pages, 5 figures. Accepted for publication in Nature Physics (DOI below), final version available week of August 28, 2006 at http://www.nature.com/nphy

    Catheterization and embolization of a replaced left hepatic artery via the right gastric artery through the anastomosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Conversion of multiple hepatic arteries into a single vascular supply is a very important technique for repeat hepatic arterial infusion chemotherapy using an implanted port catheter system. Catheterization of a replaced left hepatic artery arising from a left gastric artery using a percutaneous catheter technique is sometimes difficult, despite the recent development of advanced interventional techniques.</p> <p>Case presentation</p> <p>We present a case of a 70-year-old Japanese man with multiple hepatocellular carcinomas in whom the replaced left hepatic artery arising from the left gastric artery needed to be embolized. After several failed procedures, the replaced left hepatic artery was successfully catheterized and embolized with a microcatheter and microcoils via the right gastric artery through the anastomosis.</p> <p>Conclusion</p> <p>A replaced left hepatic artery arising from a left gastric artery can be catheterized via a right gastric artery by using the appropriate microcatheter and microguidewires, and multiple hepatic arteries can be converted into a single supply.</p

    Peripheral arterial volume distensibility changes with applied external pressure: significant difference between arteries with different compliance

    Get PDF
    This study aimed to quantify the different effect of external cuff pressure on arterial volume distensibility between peripheral arteries with different compliance. 30 healthy subjects were studied with the arm at two positions (0° and 45° from the horizontal level) to introduce different compliance of arteries. The electrocardiogram and finger and ear photoplethysmograms were recorded simultaneously under five external cuff pressures (0, 10, 20, 30 and 40 mmHg) on the whole arm to obtain arterial volume distensibility. With the applied external cuff pressures of 10, 20, 30 and 40 mmHg, the overall changes in arterial volume distensibility referred to those without external pressure were 0.010, 0.029, 0.054 and 0.108% per mmHg for the arm at the horizontal level, and 0.026, 0.071, 0.170 and 0.389% per mmHg for the arm at 45° from the horizontal level, confirming the non-linearity between arterial volume distensibility and external pressure. More interestingly, the significant differences in arterial volume distensibility changes were observed between the two arm positions, which were 0.016, 0.043, 0.116 and 0.281% per mmHg (all P < 0.01). Our findings demonstrated that arterial volume distensibility of peripheral arm arteries increased with external pressure, with a greater effect for more compliant arteries
    • 

    corecore