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Chapter 41  

Methods in Molecular Biology 

Investigating mitophagy and mitochondrial morphology in 

vivo using mito-QC 

Thomas G. McWilliams & Ian G. Ganley 

MRC Protein Phosphorylation and Ubiquitylation Unit,  

School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK 

Abstract 

Autophagy evolved as a mechanism to sustain cellular homeostasis in times 

of nutrient deprivation. Mounting evidence has also clarified that under basal 

and stress conditions, selective autophagy pathways can target the 

destruction of specific organelles. Mitochondrial autophagy, or mitophagy, has 

emerged as a key quality control (QC) mechanism to sustain the integrity of 

eukaryotic mitochondrial networks. We recently reported the development of 

mito-QC, a novel reporter mouse model that enables visualisation of 

mitophagy with precision, in fixed and live preparations. This model holds 

significant potential to transform our understanding of mammalian mitophagy 

pathways in vivo, in a variety of physiological contexts. We outline a detailed 

protocol for use of our recently described mito-QC mouse model, including 

tips and troubleshooting advice for those interested in monitoring mitophagy in 

vitro and in vivo. 
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Introduction 

Mitochondria lie at the heart of eukaryotic metabolism. Mitochondrial damage 

and dysfunction has been implicated in the pathogenesis of many human 

diseases, ranging from inherited rare metabolic disorders to widespread 

conditions such as cancer and neurodegeneration (1). The seminal discovery 

that the Parkinson’s disease related proteins PINK1 (PARK6) and Parkin 

(PARK2) modulate a distinct type of mitochondrial quality control known as 

mitophagy placed this cellular pathway at the centre of efforts to understand 

mitochondrial neurodegeneration (2). We now know that many other types of 

mitophagy exist, for example in response to hypoxia, metabolic remodelling, 

and iron chelation (3). Although in vitro biochemistry and cell biology have 

formed the basis for much of these insights, little was known about the 

physiological basis of mitophagy until the recent advent of three mitophagy 

mouse models: mito-QC, mt-Keima and mito-Timer (4-6). This is because 

monitoring mitophagy is difficult without a suitable reporter probe in vivo. 

Antibodies to mitochondrial proteins in vivo are not reliable, dye-based 

approaches are incompatible with fixed tissue and electron microscopy 

remains the gold standard. These limitations are summarised in Table 1. We 

recently described a reporter mouse model engineered to monitor this type of 

mitochondrial quality control (QC), called “mito-QC” (4). mito-QC is based on 



a tandem-fusion protein (mCherry-GFP) that is targeted to the outer 

mitochondrial membrane (OMM) via the mitochondrial targeting sequence 

(MTS) of the OMM-protein, FIS1. Under steady state conditions, all 

mitochondria fluoresce in both green and red, which when merged gives a 

yellow colour. However, under conditions where mitochondria are targeted to 

the lysosome in mitophagy, GFP fluorescence is quenched due to its acid-

labile properties – yet mCherry fluorescence remains unaffected. This has the 

advantage of being able to visualise a mitophagic “end-point”, as red puncta 

can be scored or counted to provide an index of mitophagy in cells and 

tissues. Additionally, researchers can also benefit from being able to study 

mitochondrial morphology – which is a key determinant of mitochondrial and 

cellular homeostasis (see Figure 1). There are several major advantages of 

mito-QC over other mitophagy models. (1) It is compatible with fixation and a 

variety of histochemical approaches. This enables researchers to study 

mitophagy in labelled subsets of cells in vivo with ease. At first glance, this 

advantage may seem irrelevant, however this distinguishing feature of mito-

QC from other available models is crucially important. This is because not all 

cells are equally susceptible to dysfunction in vivo. This is particularly true in 

the case of neurodegenerative diseases, where neural subpopulations exhibit 

multifactorial pathology accompanied by a high degree of selective 

vulnerability. Common examples of this include A9 dopaminergic neurons that 

degenerate in Parkinson’s disease (PD), GABA-ergic medium spiny neurons 

in Huntington’s disease (HD), entorrhinal and hippocampal CA1 neurons in 

Alzheimer’s disease (AD), ventral motoneurons in amylotrophic lateral 

sclerosis (ALS) and cerebellar Purkinje neurons that degenerate in the rare 



lysosomal storage disorder, Niemann-Pick Type C1 (NPC1). In the case of 

mitochondrial DNA (mtDNA)-associated diseases, patients present with a vast 

degree of clinical and tissue-specific heterogeneity. The cause of selective 

vulnerability across these aforementioned conditions remains unknown and 

thus, understanding the regulation of mitochondrial homeostasis between 

different cell subtypes in vivo remains a vital area of biomedical research. (2) 

This compatibility with fixation also enables a high-throughput approach to 

assessing mitophagy and mitochondrial biology in experiments where large 

sample sizes are required, without the uncertainty, low-throughput limitations 

and labour involved in live-tissue imaging methods. (3) mito-QC affords 

researchers the ability to visualise end-point turnover in the context of the 

entire mitochondrial network in vitro and in vivo. Thus in addition to 

mitophagy, mitochondrial dynamics and organelle crosstalk can also be 

investigated. (4) As mito-QC is a tandem-tag protein, it enables the 

measurement of mCherry-only signal to GFP. This ratio is useful for a variety 

of analyses, ranging from microscopy to FACS. (5) As excellent antibodies 

are available to detect GFP, researchers can obtain gold-standard verification 

in their specimens by immunogold electron microscopy. (6) GFP and mCherry 

work as an excellent tandem pair, due to their fast maturation times and 

photostability (7). Given that the delivery of mitochondria to lysosomes may 

occur over several hours, maturation times should not be a concern as 

mitolysosomes are identified as distinct mCherry-only structures. 

Furthermore, even in the case of suspected dequenching of the reporter 

signal - the distinct morphology of mitolysosomes enables a bona-fide readout 

of mitophagy in concert with LAMP1 (or equivalent) immunolabelling of 



lysosomes. Recently, we used mito-QC to demonstrate that basal mitophagy 

is unaffected in mammalian tissues lacking a functional PINK1-Parkin 

signalling pathway (8). Demonstrating the power of this approach to monitor 

mitophagy in vivo, mito-QC was also used to demonstrate the evolutionarily-

conserved and PINK1/Parkin-independent nature of basal mitophagy (9). We 

hope this protocol will serve as a useful reference for both experienced and 

newcomers to in vivo cell biology. 

 

Materials 

IMPORTANT: Obtain ethical and institutional approval for all procedures 

involving the use of animal subjects. In this study, all experiments were 

subjected to ethical approval from the University of Dundee, in addition 

to being performed by licensed and trained individuals in accordance 

with the UK Animals Act (ASPA) 1986, on a Home Office Project License.  

 

Basic isolation of tissues 

1. mito-QC mice at desired age 

2. 1X PBS (Gibco) Life Technologies 

3. Fixative: 3.7% Formaldehyde in 200 mM HEPES, at pH 7.0 –  

• Prepare fresh on day or 24 h before; store at 4°C on ice 

4. 70% EtOH (for sterilisation) 

5. Autoclaved, sterile surgical instruments – Fine Science Tools 

 

Isolation of adult tissues following trans-cardial perfusion (or perfusion-

fixation) 



1. As above, but with additional appropriate surgical implements for 

procedure 

2. Automated Perfusion: Suitable perfusion system (Perfusion One – Leica 

or equivalent) or Peristaltic Pump. For manual delivery of perfusate, use a 

20 ml syringe.   

3. 1X PBS (Gibco) Life Technologies 

4. For trans-cardial perfusion with PBS: 

a. Perfuse with 1X PBS (Gibco) Life Technologies until blood runs 

clear, rapidly excise organs of interest and place into labelled tubes 

containing 3.7% Formaldehyde in 200 mM HEPES, at pH 7.0 – 

make fresh on day or 24 h before; store at 4°C. 

5. For trans-cardial perfusion-fixation: 

a. Perfuse with 1X PBS (Gibco) Life Technologies and switch to 3.7% 

Formaldehyde in 200 mM HEPES, at pH 7.0 – make fresh on day 

or 24 h before; store at 4°C. Rapidly excise organs of interest and 

post-fix in labelled tubes containing 3.7% Formaldehyde in 200 mM 

HEPES, at pH 7.0. 

 

6. Fixation times will vary depending on the age of the animal, type and size 

of specimen. For adult organs, we typically post-fix for 24 hours at 4°C. 

For embryos, fixation times will vary according to developmental stage. 

 

Tissue sectioning  

1. Sucrose (D-saccharose)  

2. Peel-A-Way histology moulds (Ted Pella) or equivalent 



a. NOTE: A range of different moulds are available. Select the one 

best for the tissue of interest, depending on size and 

sectioning setup. 

3. Cold room or fridge at 4°C 

4. OCT – Sakura (Cryoprotectant – for cryosectioning) 

5. SuperGlue (For vibrasectioning) 

6. For sectioning:  

a. Thaw-mounted sections - Cryostat: e.g. Leica CM3080 

b. Free-floating sections – Vibratome: e.g. Leica VT2000 

7. Leica SurgiPath slides 

8. Ice-cold 1X PBS (if sectioning using vibratome) 

9. 12 or 24-well-plastic dishes containing 1X PBS, Sable Paintbrush (To 

collect free-floating vibrasections) 

10.  Cryoboxes with desiccant, suitable for slide storage (cryosections) 

 

NOTES: 

a. We typically section adult brains on a vibratome, thickness 

depends on orientation and desired downstream application. 

For horizontal (transverse) vibrasections, we use 100-200 

micron sections. Free-floating cryo-sections may be obtained 

using a sledge microtome with a freezing-stage attachment. 

b. On the cryostat, sections ranging from 5-50 microns can be 

acquired. It can be difficult to obtain consistent sections below 

8 microns, although such thin tissue sections may be required 

for specialist microscopy applications. As a general rule of 



thumb, we typically acquire good cryosections between 12-20 

microns.  

c. For cryosections: optimisation of tissue section 

acquisition/collection may vary between instruments. Consult 

an experienced histologist for practical guidance, as many 

factors (tissue type, chamber and specimen core temperature, 

anti-roll plate, adequate fixation and freezing of specimen, 

blades and technical expertise) can greatly influence the 

quality of tissue sections obtained. Air dry sections and store 

at -20°C to -80°C, or proceed to IHC.  

d. For vibrasections: free-floating sections are collected in 

appropriate 12-24 well dishes at 4°C. The addition of sodium 

azide to PBS will prevent putrefaction and microbial growth 

over time, without interfering with fluorescent signal. 

 

Nuclear counterstaining  

1. We typically always use DAPI or Hoescht (Blue); A far-red stain such as 

ToPro-3 may also suffice, although we have not tested this extensively. 

 

Mounting of tissue sections 

1. No.1.5 coverslips MenzerGlaser 

2. Vectashield H-1000  

o NOTE: For all experiments with mito-QC tissues, 

Vectashield H-1000 provides excellent and consistent 

results, without any detectable loss of signal for up to 1 



year. We have encountered unusual imaging artefacts with 

Vectashield “hard-set” formulations that contain a hard 

setting agent. For this reason, we advise against the use of 

mounting media containing a hard-setting agent. 

3. Suitable quick-drying sealing agent: Rimmel 60-Second Shine 

(Transparent) or TopCoat. 

4. Kimwipes/Absorbent Lint-Free Tissues 

5. Slide Folder, storage space at 4°C. 

 

Imaging of mito-QC tissues and cells 

1. Zeiss LSM 710 META or LSM880 with Airyscan; Laser Scanning Confocal 

Microscopes or Equivalent, with 4x, 40x, 63x and 100x objectives 

2. Multiphoton laser for Deep Tissue Imaging 

3. For live cell imaging: Spinning-disk confocal microscopes may also offer a 

faster and milder platform for live-cell imaging experiments. 

 

Verification of mitolysosomes by LAMP1 immunohistochemistry and 

immunocytochemistry 

1. Antibody to LAMP1: Rat anti-LAMP1, clone 1D4B, Developmental Studies 

Hybridoma Bank. 

 

Establishment of primary MEF cultures from mito-QC embryos 

1. mito-QC embryos at desired/appropriate stage of gestation (E13.5-E17.5) 

2. 10 cm Tissue Culture-Treated Petri Dishes 

3. Autoclaved, sterile surgical instruments – Fine Science Tools 



4. Sterile, disposable scalpels 

5. DMEM containing 10% FBS, 2 mM L-Glutamine, 50 U/ml Penicillin, 50 

ug/ml Streptomycin, 1X Sodium Pyruvate, 1X Non-Essential Amino Acids. 

 

Immunohistochemical labelling of tissue sections 

1. mito-QC tissue sections 

2. Slide staining tray/system 

3. 1X PBS 

4. Disposable Pasteur pipettes/squeegee bottle 

5. Primary and Secondary Antibodies 

6. Detergent: Triton-X100 

7. Optional: 1% SDS for antigen retrieval 

 

Crucial: preparation of fixative and solutions & mito-QC stability 

mito-QC exploits the acid-labile properties of GFP and the stability of mCherry 

to provide an end-point readout of mitophagy. The most critical aspect to the 

success and interpretation of the assay is the correct preparation of fixative at 

the appropriate pH. For all experiments, we use 3.7% formaldehyde in 200 

mM HEPES buffer, pH 7.0. Experiments using mito-QC in cultured cells have 

demonstrated de-quenching of GFP in specimens processed with fixative that 

is not at pH 7.0. Heat-mediated de-quenching of GFP can also occur, and as 

such – heat-mediated antigen retrieval is currently not possible with mito-QC. 

For those wishing to optimise antibody staining, we recommend SDS-

mediated antigen retrieval, as described in (10). Researchers should also be 

mindful when using reagents that require heating e.g. use low-melting point 



agarose that has cooled sufficiently. Nonetheless, even in a de-quenched 

sample, the morphology of mitolysosomes is distinct from that of 

mitochondria, and users can verify mitophagy by simply using IHC to a 

lysosomal marker such as LAMP1, which provides an excellent way to 

validate the lysosomal nature of mCherry-only puncta. 

 

Preparation of fixative 

3.7% formaldehyde is prepared by adding paraformaldehyde to water and 

heating to 60°C with stirring. All steps must be performed in a designated 

chemical fume hood as formaldehyde gas will be produced (CAUTION: 

carcinogenic). When up to temperature add drops of potassium or sodium 

hydroxide to clarify solution, and remove from heat to cool. The addition of 1M 

HEPES at pH 7.0 gives a final concentration of 200mM and 3.7% 

formaldehyde. The preparation of a 1M HEPES stock solution is therefore 

essential to ensure appropriate pH. Filter sterilise solution and store at 4°C in 

dark until use. For experiments involving freshly excised tissues or perfusion, 

formaldehyde must be prepared fresh and used within 24 hours. For cell-

based experiments, aliquots from a freshly prepared batch of formaldehyde 

stored at -20°C for single use. NOTE: for best results avoid the use of 

commercial fixatives, which often contain up to 10% (v/v) methanol 

(CH3OH) as a stabilisation agent. Fixation using organic solvents such 

as methanol simultaneously precipitate proteins and extract lipids from 

specimens, and thus may affect organelle morphology and GFP 

expression. 

 



Considerations for experimental designs using mito-QC  

mito-QC is expressed from the Rosa26 locus, and is found ubiquitously in all 

tissues. Heterozygote animals with one copy of the transgene demonstrate 

fluorescence in all tissues, however homozygous animals (two copies) exhibit 

noticeably pronounced fluorescence. We recommend that for analyses of 

neural tissue (particularly brain), researchers utilise homozygous mito-QC 

mice. It is also worth noting that although Rosa26-mediated expression 

affords ubiquitous inter-tissue expression, we observe a mosaic-type pattern 

of expression in the liver, and a prominent expression of the reporter in blood 

vessels. This does not affect the ability of the reporter to provide an accurate 

readout of mitophagy, but users should optimise laser settings in order to 

obtain consistent results from these particular tissues. Endogenous signal 

from mito-QC usually provides excellent results without the need for 

amplification. However, as with all transgenic models that use fluorescent 

proteins such as GFP and mCherry, researchers can avail of commercial 

reagents (anti-GFP or anti-mCherry/RFP antibodies) to enhance signal should 

this be required. For immunofluorescence, we favour chicken anti-GFP 

(ab13909) from Abcam, Rabbit anti-GFP (A11122) from Life 

Technologies/Thermo Fisher Scientific and chicken anti-GFP (GFP-1020) 

from Aves. For immunoblotting experiments, mouse anti-GFP (1181460001) 

from Roche yields excellent results. 

 

 

Establishment of MEF cultures to study mitophagy from the mito-QC 

mouse model 



Despite being one of the most heterogeneous cell populations described in 

mammals (11), MEFs have been used to as a tractable source of primary 

cells to interrogate cell biology and signalling mechanisms in myriad 

transgenic mouse lines. Indeed, their ease of culture and propagation makes 

them attractive for a variety of assays. We have established MEFs from mito-

QC embryos at a range of gestational ages from E12-E17.5. This is a general 

protocol that should suffice for the routine generation and maintenance of 

mito-QC MEFs and the study of mitophagy and mitochondrial dynamics in 

vitro. Positive controls to assess stimulus-induced mitophagy are available. To 

study PINK1-dependent mitophagy, researchers can overexpress the RBR E3 

ubiquitin ligase Parkin and use mitochondrial depolarisation agents to trigger 

mitophagy (data not shown). To study PNK1/Parkin-independent mitophagy, 

MEFs can be stimulated with the iron chelation agent deferiprone as 

described in (4,10).  

 

NOTE:  

• Heterozygote matings will yield wild-type (reporter negative), 

heterozygote and homozygote (reporter positive) genotypes. Mixed 

cultures can be established to perform comparative analyses in a 

variety of cell biology paradigms as described in McWilliams et al., 

(2016). For general analyses, tend to favour the use of het and hom 

embryos. Wild-type embryos can be distinguished from mito-QC 

embryos using a microscope equipped with epifluorescence. 

However, diagnostic end-point PCR is required to distinguish 

between HET and HOM embryos. 



• The isolation and dispatch of embryos is a regulated procedure, and 

thus we will not outline this protocol here. Perform in accordance 

with your institutional and national guidelines governing the ethics 

and treatment of animal subjects.  

• Embryo staging practices may vary between institutes, however all of 

our experiments are performed with embryos staged according to the 

criteria of Theiler (1976).   

• MEFs may be immortalised using T-cell antigen (SV40) however, be 

mindful that this transition may affect metabolic and mitochondrial 

status which could impact on the induction of mitophagy. 

• In the event that mouse maintenance is not possible, Lentiviral and 

retroviral mito-QC constructs are available for the generation of 

stable cell lines as described in (12). 

 

To establish primary MEF cultures from mito-QC embryo litters: 

1. With the aid of a dissection microscope in a laminar flow cabinet, 

remove all extra-embryonic tissues and decapitate embryos using a 

scalpel in cold sterile PBS or L-15 medium. 

a. A separate scalpel may be required for each individual embryo if 

different genotypes are a concern. 

2. Eviscerate embryos and remove a sample biopsy for genotyping by 

diagnostic PCR. 

3. In a 10 cm petri dish, homogenise eviscerated tissue with scalpels into 

fine cubes. Change scalpels between embryos. 

4. Incubate tissue with 4 ml 0.025% trypsin (Gibco) for 5-10 min at 37C. 



5. Neutralise reaction with 7.5 ml complete MEF medium and transfer to a 

15 ml falcon. 

6. Centrifuge at 500 x g for 5 min at room temperature. 

7. Carefully aspirate supernatant and re-suspend the tissue pellet in 10 ml 

of media.  

8. Triturate briefly and transfer to a 10 cm tissue culture dish. 

9. Gently distribute cells by mixing in a figure-of-eight motion, incubate at 

37C. 

10. Change media every two to three days as required.  

11. When cells are confluent they are further propagated or frozen down.  

12. Seed cells for analyses in appropriate dishes. 

 

Isolating tissues from the mito-QC mouse to perform histological 

analyses 

Tissues may be isolated fresh (i.e. after cervical dislocation or CO2), however 

perfusion remains the gold standard to remove blood-containing immunogenic 

components and provides superior results for downstream analyses. This 

protocol will detail both methods, however users should be advised that the 

latter method is recommended to achieve consistent results – especially in the 

case of immunohistochemistry and to avoid haematopoietic breakdown 

products (e.g. lipofuscin) which can confound analyses due to 

autofluorescence. 

 

1. For Direct Isolation of Tissues e.g. visceral tissues 



1. Perform euthanasia by an approved/licensed method and confirm 

death. 

2. Sanitise cadaver using 70% EtOH and prepare for laparotomy 

3. Using surgical scissors and forceps, make a longitudinal incision along 

the abdomen 

4. Identify organ(s) of interest and excise rapidly, taking care not to 

damage any other tissues 

5. Wash excess blood from isolated tissue(s) using chilled tissue culture 

grade PBS and perform further subdissection if required. 

6. Fix isolated tissue by immersion fixation. 

a. NOTE: In keeping with good histological practice, the volume of 

fixative should be 20X that of the organ to ensure appropriate 

penetration of fixative. Fixative should be prepared fresh on the 

day and used within 24 hours. 

b. Cutting tissues into smaller pieces will aid the fixation process, 

however this is at the expense of anatomical accuracy and can 

compromise spatial evaluation of mitophagy in a given region. 

c. Depending on your cellular population of interest, fixation times 

may vary. It is important not to overfix tissues. 

7. Following fixation: wash tissues in 3X in 1X PBS at 4°C. 

8. Prior to cryosectioning, cryoprotect tissues in 30% w/v sucrose/1X PBS 

at 4°C. Cryoprotected tissues will sink to the bottom of the tube over 

time. At this point, fixed tissues can be stored at 4°C. Long-term 

storage may require the addition of a low concentration of sodium 

azide (NaN3) to sucrose to prevent microbial growth and putrefaction.  



a. NOTE: The w/v percentage of sucrose may be varied 

depending on type, size and age of tissue specimen. Many 

histological protocols stipulate concentrations ranging 

from 10-30% (w/v). For consistency, we have used 30% 

throughout – however, increasing gradients of sucrose may 

also be used if preferred. 

9. For Cryosectioning: remove tissue from sucrose and quickly remove 

excess sucrose by blotting with a lint-free tissue (e.g. kimwipe). Place 

tissue in a labelled cryomould with OCT, let equilibrate for 5-20 min at 

room temperature. Use a permanent marker to label cryomould. 

Ensure sure no bubbles are present near the tissue – these can be 

removed using a hypodermic needle. Orient specimen as desired. The 

bottom of the cryomould will be the primary sectioning surface. 

a. NOTE (1): Histological practices and styles often vary 

between laboratories and there is no “single correct 

method.” In our experience, equilibration steps at this stage 

may be shortened or omitted without compromising mito-

QC signal. 

b. NOTE (2): We advise researchers to be mindful at the 

embedding step. As the bottom of the cryomould will be the 

sectioning start point, the correct orientation of fixed tissue 

at this point is crucial to obtain satisfactory results 

downstream. Be mindful of tissue orientation and 

anatomical plane e.g. sectioning mito-QC tissues in 

different planes will yield different mitochondrial network 



morphology. This will not affect the quantitation of 

mitophagy, but care is advised to achieve consistent 

results. Embedding multiple organs or organ biopsies 

within the same block also provides a high-throughput way 

of sectioning, in addition to valuable comparative analysis. 

c. NOTE (3): Many researchers often remove excess tissue at 

this point e.g. visceral fat overlying organs etc. Generally 

speaking, we do not do this as comparative analyses are 

extremely valuable. 

10. Freeze the mould containing OCT and tissue into a cryo-ready 

sectioning block. This is best achieved by partially lowering the mould 

into a suitable crucible containing chilled isopentane. The OCT will turn 

white, indicating a liquid to solid transition. This first begins at the 

periphery and continues around the tissue. Keep temperature constant 

at this step. When the entire block turns white (including the surface of 

OCT), the mould may be fully submerged into chilled isopentane for 

>1-2 min. 

a. NOTE: isopentane may be chilled using dry ice – some 

researchers favour the use of crushed dry ice for packing 

and more controlled freezing. Liquid nitrogen may also be 

used, although freezing may occur in a more rapid and 

unpredictable pattern. Tissue and OCT have been reported 

to crack using this method. 

11. Remove frozen block from isopentane, blot off excess liquid and place 

in cryostat chamber, ready for sectioning. 



a. NOTE:  

i. If sectioning immediately, tissue block will need at 

least 20 min to equilibrate to cryochamber. 

ii. If sectioning at a later date, store blocks on dry ice 

until finished. For long-term storage, wrap blocks 

individually in tinfoil, and label with tape. Place in 

sealed bag in a cryobox and store at -20°C for short 

term storage, or -80°C for long term storage. 

12. For cryosectioning advice, consult an experienced histotechnologist. 

Each cryostat is variable and a range of different parameters can 

greatly influence the integrity and quality of sections obtained. We use 

a thaw-melting technique to mount cryosections on slides, with minimal 

manipulation of sections. Slides are air-dried at room temperature for 

several hours before proceeding to staining/mounting or long term 

storage in a cryobox. 

a. NOTE: Each tissue behaves differently when cut, and will 

exhibit different characteristics when mounted to a slide 

e.g. some will adhere more easily, others prone to 

imperfections such as wrinkles/bubbles etc. Smaller 

biopsies may prove easier to handle for beginners, however 

this sacrifices a wealth of spatial information that can be 

obtained from an anatomically intact organ. 

 

1. Isolating Tissues and Trans-cardial Perfusion e.g. Adult Brain 



Trans-cardial perfusion-fixation remains the gold-standard for 

immunohistochemical analyses. However, in the absence of a suitable setup 

(appropriately vented chemical fume cupboard, equipped for surgery), trans-

cardial perfusion with PBS combined with immersion fixation provides an 

equally effective way to assess mitophagy combined with 

immunohistochemical labelling.  

NOTE: this procedure should only be conducted by experienced 

professionals licensed to perform anaesthesia and surgery, and thus we 

will not detail the specifics of perfusion surgery. Record any adverse 

side effects or events during anaesthesia that may inform results 

obtained from downstream analyses. Obtain ethical approval and 

consult your institutional named veterinary surgeon and compliance 

officer before proceeding. 

 

1. Commence terminal anaesthesia using I.P. administration of 

pentobarbital (Euthetal) we have not tested the effect of different 

agents on mito-QC, and so users who wish to utilise different 

compounds should be mindful of any potential effects on downstream 

analyses).  

2. Proceed with trans-cardial perfusion once animal has reached a 

surgical plane of anaesthesia. 

3. Use temperature-equilibrated buffer (1X PBS or equivalent) as the 

initial perfusate 

a. If you are not performing perfusion-fixation, and are only using 

PBS – perfuse animal with PBS until blood is removed.  



b. Note, other physiological solutions may be used e.g. Krebs, 

Ringers/Tyrodes etc. – however we do not know the effect of 

these with the reporter. 

4. When perfusate becomes clear, switch to fixative. 

5. Observe for standard signs of fixation throughout surgery e.g. tremor, 

clearing of the liver. 

6. For brain, decapitate animal and perform craniotomy – taking care not 

to damage tissue. Tissues should appear white, with vasculature 

minimally (if at all) apparent. If the perfusion has worked correctly – 

tissues should appear devoid of blood and characteristic vascular 

morphology. 

7. Remove brain and proceed to processing for sectioning. 

a. NOTE: For vibrasectioning, brain should be post-fixed as 

usual and then washed in PBS. Vibrasectioning will take 

place in PBS, although vibrasectioning can also be 

performed on cryo-protected specimens. 

b. For brain or other organs, biopsies can be removed and 

snap frozen in liquid N2 from freshly excised organs. This 

facilitates parallel biochemical/other measurements from a 

single animal. 

c. Organs may be bisected or cut to enable penetration of 

fixative if desired, however we have found this is not 

necessary. 

 

Notes on sectioning with mito-QC 



Typically, cryosections should suffice for the majority of investigations. 

Excellent resolution can be obtained in the majority of tissues using 

cryosections from 12-20 µm. Very thin cryosections (5-6 µm) can be useful 

with tissues that can be difficult to immunolabel.  However, in the case of 

brain tissue where thicker sections combined with free-floating 

immunohistochemistry can facilitate the resolution of entire axon tracts and 

neural pathways – we have found vibratome sectioning to provide excellent 

results. We routinely use Leica SurgiPath slides for all experiments. 

 

Standard immunostaining protocol using mito-QC sections on slides 

1. Defrost slides with tissue sections in a slide tray at room temperature 

(30 min-1 hour).  

2. Rehydrate and wash off residual OCT using 3 x 5 min washes with 1X 

PBS. 

a. NOTE: at this point, detergent can be included in the PBS 

(e.g. 0.3% Triton-X100) to permeablise sections. 

3. Incubate using block containing detergent for defined amount of time 

a. NOTE: each antibody will have different blocking 

requirements. Some antibodies require specific sera, some 

do not require blocking. Consult the relevant literature for 

your epitope of interest. Over-blocking can compromise the 

fluorescence of your target epitope. 

b. Detergent is a key factor in the success of immunostaining. 

We find that 0.3% Triton-X100 works well in the majority of 

cases. However, researchers should optimise according to 



their needs. Different detergents, combinations and 

concenrations may yield better results e.g. NP-40, Saponin, 

Digitonin, Tween-20 etc. 

4. Incubate with primary antibody for defined amount of time, in block 

solution containing detergent 

a. Practices vary according to laboratory and antibody. For 

most antigens, room temperature incubation overnight will 

yield satisfactory results. More controlled staining can be 

conducted at 4°C, or for shorter incubation times at RT. 

Incubation of slides at 37°C can also be used in the case of 

certain antibodies. 

b. Block concentration may be reduced e.g. 5% to 1% BSA. 

Consult the relevant literature to determine the optimal 

concentration in your field, bearing in mind that a high 

concentration of primary antibody over a long incubation 

period may result in sub-optimal bleed-through. Take time 

to titrate and optimise conditions according to your needs. 

c. If incubating overnight, use a humified chamber. Ensure 

slides do not dry out as this will be detrimental to the 

success of the staining protocol. Use strips of parafilm to 

prevent drying out. 

d. This is one staining method, however staining systems 

exist that exploit capillary action to use less antibody. 

Furthermore, pap-pens can be used to reduce amounts of 



primary antibody and perform multiplex labelling using 

different primary antibodies on the same slide. 

e. Many factors can influence staining success, including 

section thickness. Detergent concentration may also play a 

factor in mediating antibody penetration. Consider free-

floating sections for troublesome antigens. 

f. In addition to detergent, some investigators favour adding a 

low concentration of inert serum (e.g. BSA) to their wash 

buffers to help reduce background. 

5. Wash primary antibody off with PBS containing detergent at room 

temperature – 3 x 5 min washes. 

6. Incubate with secondary antibody in appropriate sera and detergent, 

following manufacturers concentration of 1-1.5 hours max. We find 30-

45 min using 1:500 secondary antibody can yield satisfactory results in 

most cases. 

7. Wash secondary antibody off with PBS containing detergent at room 

temperature – 3 x 5 min washes. 

8. If possible, perform nuclear counterstaining to aid anatomical 

identification. We typically use DAPI/Hoescht at 1:5,000 for 5 min at 

RT, followed by brief washing. 

a. NOTE: We advise against the use of mounting media 

containing nuclear counterstains. 

9. Blot off excess PBS and mount slides using Vectashield H-1000 and 

Deckgläser - Menzel-Gläser 1.5 coverslips. 



10. Remove excess vectashield with a kimwipe and seal neatly using 

transparent TopCoat or Nail Polish. 

a. NOTE: Drying can be accelerated by placing slides on a 

protected surface inside a chemical fume cupboard with 

appropriate airflow. 

b. To minimise refraction index artefacts, wait at least 3 hours 

before imaging. We typically mount slides and leave 

overnight to equilibrate. 

c. Place slides in a folder at 4°C for storage. 

 

Considerations for multiplex immunolabelling using mito-QC 

As mito-QC works by fluorescence in the green and red spectra, users are 

restricted to using blue and far-red spectra to selectively label other cellular 

components. We have had success with Alexa Fluor-conjugated antibodies, 

particularly with Pacific Blue, 633 nm and 647 nm fluorophores that we 

routinely use at manufacturers recommended concentration (1:500). Users 

are advised to optimise the concentration of their primary antibody to avoid 

spectral overlap between blue/green and far-red/red channels. Failure to do 

this can pose a problem during image acquisition and prevent the reliable 

identification of subcellular structures. Single labelling pilot experiments in 

wild-type (non mito-QC) tissues can be useful to understand the pattern of 

labelling before proceeding with multiplex IHC.  

 

Mouse-on-mouse immunolabelling using mito-QC 



In certain circumstances, it may be necessary to use a primary antibody 

raised in mouse to detect an antigen of interest in tissue. Mouse-on-mouse 

staining is typically associated with higher background fluorescence, due to 

cross-reactivity of mouse primary antibodies with endogenous Ig in tissues. 

Although perfusion aims to deplete tissues of blood and thus reduce 

immunogenicity, the complete elimination of all erythrocytes from an adult 

mammal can never be guaranteed. In this instance, we have found that 

mouse-on-mouse blocking serum (Vector) yields satisfactory results.  

 

Imaging in vivo mitophagy with mito-QC 

No special imaging setups are required to obtain visually striking images with 

mito-QC. In general, confocal microscopy provides the gold standard with 

additional advances such as Airyscan (Zeiss) and Hyvolution (Leica) aiding 

ultraclear resolution of mitochondria and mitolysosomes in vivo. When 

imaging GFP and mCherry using identical laser settings, mitochondrial 

networks of cultured cells and tissue specimens will appear yellow. Equal 

intensities will usually result in saturation of the red-only signal in 

mitolysosomes, which then appear larger than normal and can obscure 

mitochondrial network morphology. For this reason, we recommend users 

take time to optimise laser settings using a range indicator with their particular 

microscope. 

 

Quantitation of mitophagy using mito-QC 

A variety of quantitative approaches are compatible using mito-QC, and these 

range in sophistication, speed and complexity. As there is no spectral overlap 



between GFP and mCherry, no corrections have to be applied using our 

model. The most basic readout using our model is to monitor mitophagy by 

simply counting mitolysosomes per cell or per field. This can be performed 

manually or using an object counter application, although this method is 

laborious and not amenable to high-throughput adaption. 

 

We routinely analyse mitophagy using Volocity software (Perkin Elmer). 

Defining a protocol in this software enables consistent, semi-automated batch 

processing and a multiparametric measurement of mitophagy in tissue 

sections. Large numbers of tissues and conditions can be assessed in this 

way. For example, numbers, shape factors and size of mitolysosomes can be 

quantitated in tissue. This is particularly valuable when quantifying mitophagy 

in labelled cells or structures e.g. in a particular population of neurons, or 

quantitating overlap of mCherry-only puncta with LAMP1-positive lysosomes 

to obtain numbers of bona fide mitolysosomes in vivo. Tissue expression 

levels can sometimes vary between animals, and as such – normalising 

mCherry only signal to GFP area provides a way to obtain a consistent 

measurement of mitophagy between tissues and subjects. We advise users to 

experiment with the approach best suited and directly available to them. 

Quantitation is also possible using freeware such as NIH ImageJ/FIJI. 

Obtaining the size of mitolysosomes may provide valuable information about 

lysosomal biology in vivo. 

 

Investigating mitochondrial network morphology with mito-QC 



Mitophagy is not a singular event and this it is important to investigate its 

regulation in the wider context of mitochondrial network homeostasis. 

Mitochondria are dynamic and functionally pleiotropic organelles, and the 

modulation of mitochondrial morphology is believed to be important in 

understanding its function. This is particularly important given our recent 

discovery of mitophagic heterogeneity in vivo. Abnormal mitochondrial 

dynamics are associated with defective metabolism and a range of 

pathophysiological conditions. When laser signals have been optimised 

accordingly, the OMM signal of mito-QC enables the facile quantitation of 

mitochondrial network architecture in vitro and in vivo. We recently exploited 

this feature of our model to reveal the mitochondrial reticulum in skeletal 

muscle using light microscopy, previously only resolved by FIS-SIM. Tracing 

using appropriate software can highlight the diversity of mitochondrial 

morphologies within different tissues. Further analysis and quantitation of 

mitochondrial length and shape factor is also possible using Volocity. A 

representative figure demonstrating the range of mitochondrial networks is 

shown in Figure 2. This aspect of our model is an important one, as such 

ultrastructural characterisations were previously only possible by EM. 

 

Modelling selective autophagy in space: Volume imaging and 3D 

rendering of mitolysosomes and mitochondrial network patterns in vivo 

We previously employed mito-QC with iDISCO to visualise selective 

autophagy in the adult kidney (4). iDISCO and their variants (iDISCO+) are 

tissue clearing techniques that enable volume imaging of optically-cleared 

specimens (13). Users should be aware that the use of solvents can result in 



dequenching in mito-QC tissue specimens, although for regions that exhibit 

high levels of mitophagy this should not be problematic (e.g. proximal tubules 

of kidney contain an abundance of mitolysosomes). The acquisition of z-

stacks from immunolabelled tissue sections enables users to obtain a major 

amount of information in space, which is vital to obtain a comprehensive 

understanding of how mitochondrial homeostasis is orchestrated in vivo.  

3D Volume Image Analysis Software (Imaris, Bitplane) can be used to reveal 

cell-specific mitochondrial networks in vivo in ever increasing detail. Using the 

isosurface rendering function, it is possible to emphasise the 3D differences 

between mitochondrial networks of different cell types in vivo in a variety of 

contexts e.g. during development, between genotypes, in different treatments 

etc. This approach should prove particularly valuable in understanding how 

mitochondrial homeostasis is regulated during health and disease (Figure 3). 
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Figure Legends 

 

Figure 1: Basic principle of the mito-QC mouse model 

The mito-QC assay is based on a tandem tag construct of mCherry-GFP. This 

tag is targeted to mitochondria through the addition of a 51 amino acid 

mitochondrial targeting sequence derived from the outer mitochondrial 



membrane protein, FIS1 (FIS1mt101-152). The resultant mCherry-GFP-FIS1mt101-

152 (mito-QC) construct is observable as a red and green fluorescent signal, 

which when merged appears yellow. The engulfment of mitochondria by the 

phagophore and concomitant fusion of the mitophagosome with the lysosome 

results in the appearance of mCherry-only puncta, due to the acid-labile 

properties of GFP. This provides quantitative and facile end-point 

assessments of mitophagy and mitochondrial morphology both in vitro and in 

vivo. The bottom panel shows a micrograph of pancreatic acinar cells from 

mito-QC, highlighting actual mitochondria and mitolysosomes. Scale bar, 10 

µm. 

 

Figure 2: mito-QC enables studies of mitochondrial network morphology 

in vivo 

The outer mitochondrial membrane localisation and ubiquitous expression of 

mito-QC enables the study of mitochondria and mitochondrial network 

morphology in vivo. Shown are camera lucida-style traces of mitochondrial 

networks from skeletal muscle, heart and kidney generated in Adobe 

photoshop, using the GFP channel as a mask. Pictures are modified from 

McWilliams et al., (2016). 

 

Figure 3: Simplifying the visualisation of in vivo mitophagy in space 

within complex tissues 

In many instances, multiplex immunolabelling in complex tissues such as 

brain can prove challenging to interpret for even the most experienced 

investigators. The compatibility of mito-QC with fixation enables 



immunolabelling of cellular subsets in vivo as shown in a section of mouse 

cerebellum (left). We used 3D volume rendering of this z-stack to create an 

isosurface or volume render (right). This enables investigators to create an 

impactful and informative graphic that can simplify the interpretation of 

mitophagy within complex structures in vivo. Shown is the concentration of 

mitolysosomes present in Purkinje cell somata in vivo, as described in 

McWilliams et al., (2016). With sufficient optimisation and z-resolution, this 

technique can be successfully applied to profile the spatial nature of 

mitophagy in both cleared and non-cleared preparations. Scale bar, 10 µm. 

  



Method/Technique Advantages Disadvantages 
Transition Electron 
Microscopy (TEM) 

• Gold-standard method 
of detection 

• Enables direct 
visualisation of 
autophagosome 
membranes, autophagic 
bodies and other 
cellular compartments 

• Immunolabelling can 
localise proteins of 
interest to 
mitophagosomes 

 
 

• Laborious – many steps where 
error can be introduced 

• Requires high degree of technical 
expertise to implement & execute 

• Requires depth of experience to 
interpret 

• Not adaptable for high-throughput 
screening 

• Difficult to optimise for tissues 
• Requires perfusion-fixation for 

tissues 
• Immunolabelling can be 

challenging due to loss of epitopes 
during sample processing 

 
Co-localisation of 
mitotracker and lysotracker  

• Rapid, easy to use • Incompatible to detect mitophagy 
in vivo 

• Documented problems with 
specificity and variability in 
labelling 

• Off target effects in other 
membrane bound organelles 

 
Anti-DNA antibodies • Enables visualisation of 

loss of mt-DNA 
nucleoids following 
stimulus-induced 
mitophagy in vitro  

• Expensive 
• Antibody used in field (Progen) is 

highly inefficient: manufacturer 
recommends 1:10 dilution 

• Yields variable results in vivo 
 

Biochemical analysis of 
mitophagic flux: 

• Immunoblotting 
• Citrate Synthase 

Assay 
 

• Rapid, easy to perform  • Low Sensitivity i.e. high levels of 
mitophagy required 

• Lysosomal inhibitors required to 
interpret flux (e.g. Bafilomycin A1, 
hydroxychloroquine) and can have 
detrimental effects in vivo 
 

Immunofluoresence-based 
colocalisation of 
mitochondria with LC3-
positive autophagosomes 

• Rapid, easy to perform  
• Difficult to implement for in vivo 

mitophagy 
• Non-specific autophagosomes 

thought to form at mitochondria 
• Not all mitophagy may be LC3-

dependent 
 

mito-Keima (mt-Keima) 
 

• Provides end-point 
readout of mitophagy in 
vitro and in vivo 

• Compatible with 
intravital imaging 
 

• mt-Keima protein is incompatible 
with fixation and thus direct 
immunolabelling, only enables a 
regional analysis of mitophagy in 
complex tissues 

• Analysis must be conducted in live 
tissue slices – not amenable to 
high-throughput in vivo analysis 
and may necessitate further 
verification  

• mt-Keima signal is lost upon 
freezing – cryosectioning not 
possible 

• Long-term storage of tissue 
specimens and slices for 
reference is not possible 

• No antibodies yet available to 
Keima protein, thus electron 



Table 1: Comparison of available methods to monitor mitophagy in vitro 
and in vivo 

microscopy-based verification not 
possible 

• Spectral overlap can complicate 
interpretation and quantitation 

• Level of reporter expression must 
be controlled to prevent 
mislocalisation 

 
mito-Timer (DsRed1-E5) 
 

• Enables a pulse-chase 
monitoring of 
mitochondrial half-life 
and mitophagy in vitro 
and in vivo 

• Useful model to 
understand biogenesis 

• Compatible with fixation 
and immunolabelling 
 

• Conditional model; requires the 
use of doxycycline to activate in 
vitro 

• Constitutive Mito-Timer expression 
in mice reported to be 
heterogeneous in tissue (heart: 
expression in ventricles, reduced 
in aorta) 

• Maturation of MitoTimer protein 
may be different across cells and 
tissues in vivo 

 
mito-QC  
(mCherry-GFP-mtFIS101-152) 
 

• Provides end-point 
readout of mitophagy in 
vitro and in vivo 

• OMM labelling enables 
monitoring/characterisat
ion of mitochondrial 
network and study of 
dynamics 

• Constitutive expression 
facilitates constant 
monitoring 

• Compatible with tissue 
fixation 

• Immunolabelling 
enables resolution of 
mitophagy in a vast 
array of cell subtypes in 
vivo 

• Compatible with 
freezing and samples 
stored long-term 

• No specialist 
microscopy setup 
required – compatible 
with simple and 
sophisticated systems 

• Antibodies to GFP and 
mCherry enable 
immunogold TEM 

• Compatible with 
iDISCO for volume 
imaging (although some 
dequenching may occur 
due to use of solvents) 

• Ease of measurement: 
enables multiparametric 
quantitation – 
mitolysosome number, 
size, mitochondrial 
shape, etc. 
 

• Fixation must be conducted using 
formaldehyde at pH 7.0: any 
deviation in pH of fixative will 
result in dequenching of GFP 
(yellow mitolysosomes instead of 
red-only) 

o In this instance, LAMP1 
immunostaining can be 
used to verify the 
lysosomal nature of 
presumptive mitophagic 
structures. 

• For fluorescent immunolabelling, 
secondary fluorophores limited to 
those outside of GFP/mCherry 
spectra 

• Incompatible with heat-mediated 
antigen retrieval 

o SDS-mediated antigen 
retrieval possible 

• Level of reporter expression must 
be controlled to prevent 
mislocalisation 
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