1,465 research outputs found

    Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    Get PDF
    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes

    Consistent deformations method applied to a topological coupling of antisymmetric gauge fields in D=3

    Get PDF
    In this work we use the method of consistent deformations of the master equation by Barnich and Henneaux in order to prove that an abelian topological coupling between a zero and a two form fields in D=3 has no nonabelian generalization. We conclude that a topologically massive model involving the Kalb-Ramond two-form field does not admit a nonabelian generalization. The introduction of a connection-type one form field keeps the previous result.Comment: 8 pages. To appear in Physics Letters

    A concise stereoselective synthesis of pterosin B

    Get PDF
    Pterosin B is a naturally occurring indanone found in bracken fern (Pteridium aquilinum) that displays a variety of interesting pharmacological properties, but for which few stereoselective syntheses exist. Herein we describe a 7-step stereoselective synthesis of (2R)-pterosin B via 6-bromo-5,7-dimethylindan-1-one whose structure was confirmed by NOE analysis and structure determination by X-ray crystallography. The hydroxyethyl chain was introduced via a Suzuki-Miyaura cross-coupling reaction. The 2-methyl group was introduced stereoselectively by methylation of a SAMP [(S)-1-amino-2-methoxymethyl)pyrrolidine] hydrazone and the chiral auxiliary was removed to produce (2R)-pterosin B. The structure of pterosin B was confirmed by specific rotation and structural determination by X-ray crystallography

    Detection methods for non-Gaussian gravitational wave stochastic backgrounds

    Get PDF
    We address the issue of finding an optimal detection method for a discontinuous or intermittent gravitational wave stochastic background. Such a signal might sound something like popcorn popping. We derive an appropriate version of the maximum likelihood detection statistic, and compare its performance to that of the standard cross-correlation statistic both analytically and with Monte Carlo simulations. The maximum likelihood statistic performs better than the cross-correlation statistic when the background is sufficiently non-Gaussian. For both ground and space based detectors, this results in a gain factor, ranging roughly from 1 to 3, in the minimum gravitational-wave energy density necessary for detection, depending on the duty cycle of the background. Our analysis is exploratory, as we assume that the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated, aligned detectors. Before this detection method can be used in practice with real detector data, further work is required to generalize our analysis to accommodate separated, misaligned detectors with realistic, colored, non-Gaussian noise.Comment: 25 pages, 12 figures, submitted to physical review D, added revisions in response to reviewers comment

    The Gaseous Environments of Radio Galaxies

    Get PDF
    X-ray emission traces the gaseous environments of radio sources. The medium must be present for jet confinement, but what are its influence on jet fuelling, dynamics, propagation, and disruption? The observational situation is both complicated and enriched by radio sources being multi-component X-ray emitters, with several possible regions of non-thermal emission. Recent work, primarily based on sensitive ROSAT pointings, is used to contrast the X-ray emission and environments of radio sources with (a) low power, (b) high power at high redshift, (c) high power at lower redshift, and (d) GHz peaked spectrum emission. The trends in external gas density and pressure near extended radio structures are reviewed. Imminently-available X-ray measurements with vastly improved resolution and sensitivity have great potential for resolving many open issues.Comment: 20 pages, including 11 figures, using elsart.sty to appear in `Life Cycles of Radio Galaxies' ed. J Biretta et al., New Astronomy Reviews (Elsevier Science

    Density Functional Study of Cubic to Rhombohedral Transition in α\alpha-AlF3_3

    Full text link
    Under heating, α\alpha-AlF3_3 undergoes a structural phase transition from rhombohedral to cubic at temperature TT around 730 K. The density functional method is used to examine the TT=0 energy surface in the structural parameter space, and finds the minimum in good agreement with the observed rhombohedral structure. The energy surface and electronic wave-functions at the minimum are then used to calculate properties including density of states, Γ\Gamma-point phonon modes, and the dielectric function. The dipole formed at each fluorine ion in the low temperature phase is also calculated, and is used in a classical electrostatic picture to examine possible antiferroelectric aspects of this phase transition.Comment: A 6-page manuscript with 4 figures and 4 table

    Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management

    Get PDF
    To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01

    Two-level systems: exact solutions and underlying pseudo-supersymmetry

    Get PDF
    Chains of first-order SUSY transformations for the spin equation are studied in detail. It is shown that the transformation chains are related with a olynomial pseudo-supersymmetry of the system. Simple determinant formulas for the final Hamiltonian of a chain and for solutions of the spin equation are derived. Applications are intended for a two-level atom in an electromagnetic field with a possible time-dependence of the field frequency. For a specific form of this dependence, the time oscillations of the probability to populate the excited level disappear. Under certain conditions this probability becomes a function tending monotonously to a constant value which can exceed 1/2.Comment: to be published in Ann. Phys. (NY), 6 figures, 17 page

    Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia

    No full text
    Yttria-stabilized zirconia powders, containing different levels of SiO2 and Al2O3, have been plasma sprayed onto metallic substrates. The coatings were detached from their substrates and a dilatometer was used to monitor the dimensional changes they exhibited during prolonged heat treatments. It was found that specimens containing higher levels of silica and alumina exhibited higher rates of linear contraction, in both in-plane and through-thickness directions. The in-plane stiffness and the through-thickness thermal conductivity were also measured after different heat treatments and these were found to increase at a greater rate for specimens with higher impurity (silica and alumina) levels. Changes in the pore architecture during heat treatments were studied using Mercury Intrusion Porosimetry (MIP). Fine scale porosity (<_50 nm) was found to be sharply reduced even by relatively short heat treatments. This is correlated with improvements in inter-splat bonding and partial healing of intra-splat microcracks, which are responsible for the observed changes in stiffness and conductivity, as well as the dimensional changes
    corecore