15 research outputs found

    Sobemovirus RNA linked to VPg over a threonine residue

    Get PDF
    AbstractPositive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5′ end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg

    Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins.

    Get PDF
    Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV). These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5' end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP) moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle.Funding is provided by Wellcome Trust (Ref: 097997/Z/11/Z) and the institutional research funding IUT19-3 from the Estonian Ministry of Education and Research.This is the final version of the article. It first appeared from PeerJ via https://doi.org/10.7717/peerj.213

    Transcriptional slippage in the positive-sense RNA virus family Potyviridae.

    Get PDF
    The family Potyviridae encompasses ~30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO, which is essential for virus cell-to-cell movement. However, the frameshift expression mechanism has hitherto remained unknown. Here, we demonstrate that transcriptional slippage, specific to the viral RNA polymerase, results in a population of transcripts with an additional "A" inserted within a highly conserved GAAAAAA sequence, thus enabling expression of P3N-PIPO. The slippage efficiency is ~2% in Turnip mosaic virus and slippage is inhibited by mutations in the GAAAAAA sequence. While utilization of transcriptional slippage is well known in negative-sense RNA viruses such as Ebola, mumps and measles, to our knowledge this is the first report of its widespread utilization for gene expression in positive-sense RNA viruses.Work in the AEF laboratory was funded by grants from the WellcomeTrust [088789], [106207] and Biotechnology and Biological ResearchCouncil (BBSRC) [BB/J007072/1], [BB/J015652/1]. Work in the JPC laboratorywas funded by BBSRC grants [BB/J015652/1], [BB/J011762/1]. BYWC wassupported by a Sir Henry Wellcome Postdoctoral Fellowship [096082]and an EMBL long-term postdoctoral fellowship

    Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus.

    Get PDF
    Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed-1 ribosomal frameshift (1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that-1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3= RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient-1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses.Work in the A.E.F. lab is supported by the Wellcome Trust [088789], [106207]; and the Biotechnology and Biological Sciences Research Council [BB/J007072/1]. L.F. is supported by a Biotechnology and Biological Sciences Research Council PhD studentship.This is the final published version. It first appeared at http://jvi.highwire.org/content/early/2015/06/05/JVI.01043-15.abstract

    A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing

    Get PDF
    The single-stranded, positive-sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3 third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA(6) sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA(6) sequence, with higher slippage efficiency (approximate to 5%) than at the pipo site (approximate to 1%). Transient expression of recombinant P1 or the transframe' product, P1N-PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N-PISPO inhibited short-distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co-opted for the evolution and expression of further novel gene products.Peer reviewe

    Transcriptional slippage in the positive-sense RNA virus family Potyviridae

    Get PDF
    The family Potyviridae encompasses ~30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N‐PIPO, which is essential for virus cell‐to‐cell movement. However, the frameshift expression mechanism has hitherto remained unknown. Here, we demonstrate that transcriptional slippage, specific to the viral RNA polymerase, results in a population of transcripts with an additional “A” inserted within a highly conserved GAAAAAA sequence, thus enabling expression of P3N‐PIPO. The slippage efficiency is ~2% in Turnip mosaic virus and slippage is inhibited by mutations in the GAAAAAA sequence. While utilization of transcriptional slippage is well known in negative‐sense RNA viruses such as Ebola, mumps and measles, to our knowledge this is the first report of its widespread utilization for gene expression in positive‐sense RNA viruses

    A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants

    Get PDF
    "This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission."[EN] Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering.This research was supported by grants BIO2014-54269-R and AGL2013-49919-EXP to J-AD and AGL2013-42537-R to J-JL-M from the Ministerio de Economia y Competitividad (MINECO, co-financed FEDER funds), Spain. MM was supported by the Erasmus Mundus Scholarship-ACTION 2 WELCOME program of the European Commission. Research in CRAG is supported in part by CERCA (Generalitat de Catalunya) and by "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533).Cordero, T.; Mohamed, M.; Lopez Moya, J.; Daros Arnau, JA. (2017). A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Frontiers in Microbiology. 8:1-11. https://doi.org/10.3389/fmicb.2017.00611S1118Abdel-Hafez, S. I. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., Daròs, J.-A., & Mohamed, M. A. (2016). Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6(2). doi:10.1007/s13205-016-0515-6Allan, A. C., Hellens, R. P., & Laing, W. A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13(3), 99-102. doi:10.1016/j.tplants.2007.11.012An, C. H., Lee, K.-W., Lee, S.-H., Jeong, Y. J., Woo, S. G., Chun, H., … Kim, C. Y. (2015). Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiology and Biochemistry, 89, 1-10. doi:10.1016/j.plaphy.2015.02.002Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., & Pirone, T. P. (1995). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology, 76(2), 265-270. doi:10.1099/0022-1317-76-2-265Baulcombe, D. C., Chapman, S., & Cruz, S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. The Plant Journal, 7(6), 1045-1053. doi:10.1046/j.1365-313x.1995.07061045.xBedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922Boyer, J.-C., & Haenni, A.-L. (1994). Infectious Transcripts and cDNA Clones of RNA Viruses. Virology, 198(2), 415-426. doi:10.1006/viro.1994.1053Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295Cordero, T., Cerdán, L., Carbonell, A., Katsarou, K., Kalantidis, K., & Daròs, J.-A. (2017). Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 30(1), 63-71. doi:10.1094/mpmi-11-16-0239-rDolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00453Engler, C., & Marillonnet, S. (2013). Golden Gate Cloning. Methods in Molecular Biology, 119-131. doi:10.1007/978-1-62703-764-8_9FRENCH, R., JANDA, M., & AHLQUIST, P. (1986). Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells. Science, 231(4743), 1294-1297. doi:10.1126/science.231.4743.1294Gibbs, A., & Ohshima, K. (2010). Potyviruses and the Digital Revolution. Annual Review of Phytopathology, 48(1), 205-223. doi:10.1146/annurev-phyto-073009-114404Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences, 93(22), 12400-12405. doi:10.1073/pnas.93.22.12400Joshi, R. L., Joshi, V., & Ow, D. W. (1990). BSMV genome mediated expression of a foreign gene in dicot and monocot plant cells. The EMBO Journal, 9(9), 2663-2669. doi:10.1002/j.1460-2075.1990.tb07451.xKarasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332Kelloniemi, J., Mäkinen, K., & Valkonen, J. P. T. (2008). Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 135(2), 282-291. doi:10.1016/j.virusres.2008.04.006Krenz, B., Bronikowski, A., Lu, X., Ziebell, H., Thompson, J. R., & Perry, K. L. (2015). Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. Journal of General Virology, 96(9), 2904-2912. doi:10.1099/vir.0.000185Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N., & Singh, D. K. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology, 9(1), 38. doi:10.1186/1477-3155-9-38López-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094Mishra, S., & Singh, H. B. (2014). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99(3), 1097-1107. doi:10.1007/s00253-014-6296-0Nie, B., Singh, M., Sullivan, A., Singh, R. P., Xie, C., & Nie, X. (2011). Recognition and Molecular Discrimination of Severe and Mild PVYO Variants of Potato virus Y in Potato in New Brunswick, Canada. Plant Disease, 95(2), 113-119. doi:10.1094/pdis-04-10-0257Olspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive‐sense RNA virus family Potyviridae. EMBO reports, 16(8), 995-1004. doi:10.15252/embr.201540509Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00153Quenouille, J., Vassilakos, N., & Moury, B. (2013). Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology, 14(5), 439-452. doi:10.1111/mpp.12024Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA Polymerase Slippage as a Mechanism for the Production of Frameshift Gene Products in Plant Viruses of the Potyviridae Family. Journal of Virology, 89(13), 6965-6967. doi:10.1128/jvi.00337-15Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., … Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111-129. doi:10.1016/j.tibs.2016.09.010Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-taSaxena, P., Hsieh, Y.-C., Alvarado, V. Y., Sainsbury, F., Saunders, K., Lomonossoff, G. P., & Scholthof, H. B. (2010). Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 9(6), 703-712. doi:10.1111/j.1467-7652.2010.00574.xSCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.xThole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563Tilsner, J., & Oparka, K. J. (2010). Tracking the green invaders: advances in imaging virus infection in plants. Biochemical Journal, 430(1), 21-37. doi:10.1042/bj20100372Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90. doi:10.1016/j.pbi.2014.05.011Zhao, X., Yuan, Z., Fang, Y., Yin, Y., & Feng, L. (2012). Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. European Food Research and Technology, 236(1), 109-117. doi:10.1007/s00217-012-1869-
    corecore