28 research outputs found

    The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.)

    Get PDF
    The evolution of trichromatic colour vision by the majority of anthropoid primates has been linked to the efficient detection and selection of food, particularly ripe fruits among leaves in dappled light. Modelling of visual signals has shown that trichromats should be more efficient than dichromats at distinguishing both fruits from leaves and ripe from unripe fruits. This prediction is tested in a controlled captive setting using stimuli recreated from those actually encountered by wild tamarins (Saguinus spp.). Dietary data and reflectance spectra of Abuta fluminum fruits eaten by wild saddleback (Saguinus fuscicollis) and moustached (Saguinus mystax) tamarins and their associated leaves were collected in Peru. A. fluminum leaves, and fruits in three stages of ripeness, were reproduced and presented to captive saddleback and red-bellied tamarins (Saguinus labiatus). Trichromats were quicker to learn the task and were more efficient at selecting ripe fruits than were dichromats. This is the first time that a trichromatic foraging advantage has been demonstrated for monkeys using naturalistic stimuli with the same chromatic properties as those encountered by wild animal

    Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene.

    Get PDF
    BACKGROUND: Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. RESULTS: We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. CONCLUSIONS: Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Effect of colour vision status on insect prey capture efficiency of captive and wild tamarins (Saguinus spp.)

    Get PDF
    The colour vision polymorphism of most New World primates is a model system to study the function of colour vision. Theories for the evolution of primate trichromacy focus on the efficient detection and selection of ripe fruits and young leaves amongst mature leaves, when trichromats are likely to be better than dichromats. We provide data on whether colour vision status affects insect capture in primates. Trichromatic tamarins (Saguinus spp.) catch more prey than dichromats, but dichromats catch a greater proportion of camouflaged prey than trichromats. The prey caught does not differ in size between the two visual phenotypes. Thus two factors may contribute to the maintenance of genetic polymorphism of middle- to long-wavelength photopigments in Platyrrhines: the advantage in finding fruit and leaves, which supports the maintenance of the polymorphism through a heterozygote advantage, and the dichromats’ exploitation of different (e.g., camouflaged) food, which results in frequency-dependent selection on the different colour vision phenotypes

    Parallel adaptation of rabbit populations to myxoma virus.

    Get PDF
    In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.This work was supported by grants from the Programa Operacional Potencial Humano–Quadro de Referência Estratégica Nacional funds from the European Social Fund and Portuguese Ministério da Ciência, Tecnologia e Ensino Superior to M.C. (IF/00283/2014/CP1256/CT0012), to P.J.E. (IF/00376/2015) and to J.M.A. (SFRH/BD/72381/2010). AM was supported by the European Research Council (grant 647787-LocalAdaptation). FJ was supported by the European Research Council (grant 281668). LL was supported by the European Research Council grant (339941-ADAPT). McFadden Lab is supported by National Institute of Health (NIH) grant R01 AI080607. S.C.G. holds a Sir Henry Dale Fellowship, co-funded by the Wellcome Trust and the Royal Society (098406/Z/12/Z)

    Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies

    Get PDF
    Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3′ of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus

    Abstracts from the NIHR INVOLVE Conference 2017

    Get PDF
    n/

    Evolution and selection of trichromatic vision in primates.

    No full text
    Trichromatic colour vision is of considerable importance to primates but is absent in other eutherian mammals. Primate colour vision is traditionally believed to have evolved for finding food in the forest. Recent work has tested the ecological importance of trichromacy to primates, both by measuring the spectral and chemical properties of food eaten in the wild, and by testing the relative foraging abilities of dichromatic and trichromatic primates. Molecular studies have revealed the genetic mechanisms of the evolution of trichromacy, and are providing new insight into visual pigment gene expression and colour vision defects. By drawing together work from these different fields, we can gain a better understanding of how natural selection has shaped the evolution of trichromatic colour vision in primates and also about mechanisms of gene duplication, heterozygote advantage and balancing selection
    corecore