478 research outputs found

    Stellar Collisions and the Interior Structure of Blue Stragglers

    Get PDF
    Collisions of main sequence stars occur frequently in dense star clusters. In open and globular clusters, these collisions produce merger remnants that may be observed as blue stragglers. Detailed theoretical models of this process require lengthy hydrodynamic computations in three dimensions. However, a less computationally expensive approach, which we present here, is to approximate the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These algorithms have been fine tuned through comparisons with the results of our previous hydrodynamic simulations. We find that the thermodynamic and chemical composition profiles of our simple models agree very well with those from recent SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of our simple models also matches closely that of the more accurate hydrodynamic models. Our algorithms have been implemented in an easy to use software package, which we are making publicly available (see http://vassun.vassar.edu/~lombardi/mmas/). This software could be used in combination with realistic dynamical simulations of star clusters that must take into account stellar collisions.Comment: This revised version has 37 pages, 13 figures, 4 tables; submitted to ApJ; for associated software package, see http://vassun.vassar.edu/~lombardi/mmas/ This revised version presents additional comparisons with SPH results and slightly improved merger recipe

    Measuring storage and loss moduli using optical tweezers: broadband microrheology

    Full text link
    We present an experimental procedure to perform broadband microrheological measurements with optical tweezers. A generalised Langevin equation is adopted to relate the time-dependent trajectory of a particle in an imposed flow to the frequency-dependent moduli of the complex fluid. This procedure allows us to measure the material linear viscoelastic properties across the widest frequency range achievable with optical tweezers.Comment: 5 pages, 3 figure

    Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia

    Get PDF
    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetah

    Luminous Infrared Galaxies with the Submillimeter Array: I. Survey Overview and the Central Gas to Dust Ratio

    Get PDF
    We present new data obtained with the Submillimeter Array for a sample of fourteen nearby luminous and ultraluminous infrared galaxies. The galaxies were selected to have luminosity distances D < 200 Mpc and far-infrared luminosities log(L_FIR) > 11.4. The galaxies were observed with spatial resolutions of order 1 kpc in the CO J=3-2, CO J=2-1, 13CO J=2-1, and HCO+ J=4-3 lines as well as the continuum at 880 microns and 1.3 mm. We have combined our CO and continuum data to measure an average gas-to-dust mass ratio of 120 +/- 28 (rms deviation 109) in the central regions of these galaxies, very similar to the value of 150 determined for the Milky Way. This similarity is interesting given the more intense heating from the starburst and possibly accretion activity in the luminous infrared galaxies compared to the Milky Way. We find that the peak H_2 surface density correlates with the far-infrared luminosity, which suggests that galaxies with higher gas surface densities inside the central kiloparsec have a higher star formation rate. The lack of a significant correlation between total H_2 mass and far-infrared luminosity in our sample suggests that the increased star formation rate is due to the increased availability of molecular gas as fuel for star formation in the central regions. In contrast to previous analyses by other authors, we do not find a significant correlation between central gas surface density and the star formation efficiency, as trace by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that it is the star formation rate, not the star formation efficiency, that increases with increasing central gas surface density in these galaxies.Comment: 66 pages, 39 figures, aastex preprint format; to be published in ApJ Supplements. Version of paper with full resolution figures available at http://www.physics.mcmaster.ca/~wilson/www_xfer/ULIRGS_publi

    Parallel HOP: A Scalable Halo Finder for Massive Cosmological Data Sets

    Full text link
    Modern N-body cosmological simulations contain billions (10910^9) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory, and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly-employed halo finders, such that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes MPI and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger datasets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit yt, an analysis toolkit for Adaptive Mesh Refinement (AMR) data that includes complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and datasets in excess of 200032000^3 particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.Comment: 29 pages, 11 figures, 2 table

    Gene discovery and comparative analysis of X-degenerate genes from the domestic cat Y chromosome☆☆Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession No. EU879967-EU879988.

    Get PDF
    AbstractMammalian sex chromosomes are the remnants of an ancient autosomal pair present in the ancestral mammalian karyotype. As a consequence of random decay and chromosome rearrangements over evolutionary time, Y chromosome gene repertoires differ between eutherian lineages. To investigate the gene repertoire and transcriptional analysis of the domestic cat Y chromosome, and their potential roles in spermatogenesis, we obtained full-length cDNA sequences for all known Y genes and their X chromosome gametologues and used those sequences to create a BAC-based physical map of the X-degenerate region. Our results indicate the domestic cat Y chromosome has retained most X-degenerate genes that were present on the ancestral eutherian Y chromosome. Transcriptional analysis revealed that most feline X-degenerate genes have retained housekeeping functions shared by their X chromosome partners and have not been specialized for testis-specific functions. Physical mapping data indicate that the cat SRY gene is present as multiple functional copies and that very little of the felid Y chromosome may be single copy. X-Y gene divergence time estimates obtained using Bayesian methods confirm an early origin of Stratum 1 genes prior to the origin of therian mammals. We observed no statistical difference in the ages of Stratum 2 and Stratum 3 gene pairs, suggesting that eutherian and marsupial Stratum 2 genes may have been independently retained in each lineage

    Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: the consequences of temperature and timescale on <sup>40</sup>Ar/<sup>39</sup>Ar mica geochronology

    Get PDF
    40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in terms of timescales of the metamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted metamorphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and temperature (P–T) conditions. The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample dispersion with increasing temperature through the sequence. The white mica populations span ~ 2–9 Ma within each sample in the structurally lower levels (garnet grade) but only ~ 0–3 Ma at structurally higher levels (kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma (2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with mean single-grain fusion dates varying from 74.7 ± 11.8 Ma (2σ) at the lowest structural levels to 18.6 ± 4.7 Ma (2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed. Temperatures > 600 °C at pressures of 0.4–0.8 GPa sustained over > 5 Ma, appear to be required for white mica and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion modelling of Ar in white mica from the highest structural levels suggests that the high-temperature rocks cooled at a rate of ~ 50–80 °C Ma− 1, consistent with rapid thrusting, extrusion and exhumation along the Main Central Thrust during the mid-Miocene

    Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India

    Get PDF
    The Zimithang Thrust juxtaposes two lithotectonic units of the Greater Himalayan Sequence in Arunachal Pradesh, NE India. Monazite U–Pb, muscovite 40Ar/39Ar and thermobarometric data from rocks in the hanging and footwall constrain the timing and conditions of their juxtaposition across the structure, and their subsequent cooling. Monazite grains in biotite–sillimanite gneiss in the hanging wall yield LA-ICP-MS U–Pb ages of 16 ± 0.2 to 12.7 ± 0.4 Ma. A schistose gneiss within the high strain zone yields overlapping-to-younger monazite ages of 14.9 ± 0.3 to 11.5 ± 0.3 Ma. Garnet–staurolite–mica schists in the immediate footwall yield older monazite ages of 27.3 ± 0.6 to 17.1 ± 0.2 Ma. Temperature estimates from Ti-in-biotite and garnet–biotite thermometry suggest similar peak temperatures were achieved in the hanging and footwalls (~ 525–650 °C). Elevated temperatures of ~ 700 °C appear to have been reached in the high strain zone itself and in the footwall further from the thrust. Single grain fusion 40Ar/39Ar muscovite data from samples either side of the thrust yield ages of ~ 7 Ma, suggesting that movement along the thrust juxtaposed the two units by the time the closure temperature of Ar diffusion in muscovite had been reached. These data confirm previous suggestions that major orogen-parallel out-of-sequence structures disrupt the Greater Himalayan Sequence at different times during Himalayan evolution, and highlight an eastwards-younging trend in 40Ar/39Ar muscovite cooling ages at equivalent structural levels along Himalayan strike
    • …
    corecore