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40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in
terms of timescales of themetamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks
sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted meta-
morphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore
factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and tem-
perature (P–T) conditions.
The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample
dispersionwith increasing temperature through the sequence. Thewhitemica populations span ~2–9Mawithin
each sample in the structurally lower levels (garnet grade) but only ~0–3 Ma at structurally higher levels
(kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma
(2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples
yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with
mean single-grain fusion dates varying from 74.7± 11.8Ma (2σ) at the lowest structural levels to 18.6± 4.7Ma
(2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed.
Temperatures N600 °C at pressures of 0.4–0.8 GPa sustained over N5 Ma, appear to be required for white mica
and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter
metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion
modelling of Ar inwhitemica from the highest structural levels suggests that the high-temperature rocks cooled
at a rate of ~50–80 °C Ma−1, consistent with rapid thrusting, extrusion and exhumation along the Main Central
Thrust during the mid-Miocene.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

40Ar/39Ar dating is a tool commonly used to investigate the cooling
and exhumation history of metamorphosed terranes. White mica and
biotite 40Ar/39Ar ages are frequently interpreted as revealing the timing
of cooling through a mineral-specific closure temperature (TC), provid-
ed the mineral grew at a temperature considerably above the TC
(Dodson, 1973). The TC is an estimate of the “temperature of a mineral
at the time of its apparent age” (Dodson, 1973; Lister and Baldwin,
1996), and is estimated at ~470 °C forwhitemica and ~330 °C for biotite
(100 μm grain size and cooling at 100 °C Ma−1at 1 GPa, slower cooling
would result in a lower TC; Harrison et al., 2009; Harrison et al., 1985).

The “apparent” age calculated from 40Ar/39Ar data may represent a
number of different processes, including, (re)crystallisation, diffusive
loss of Ar during cooling, loss or gain of Ar during deformation, incorpo-
ration of excess Ar, incomplete degassing of inherited Ar, or the incom-
plete effects of any of the above. There are a number of assumptions that
need to be met in order for an 40Ar/39Ar “date” to be interpreted as
constraining the timing of cooling age following the Dodson (1973) TC
formulation. Firstly, a grain boundary fluid networkmust have behaved
as an open system at high temperature, where Ar efficiently diffuses out
of its source (the mica grain) and into the grain boundary network. As
Ar is more soluble in hydrous fluid than in the crystal lattice (e.g.
Kelley, 2002), and preferentially diffuses into the grain boundary net-
work, which is assumed to represent an infinite sink. Secondly, it is as-
sumed that there was no initial Ar within the crystal lattice when the
grain (re)crystallised. Finally, it is assumed that Ar is only (re)distributed
within the grain by thermally activated volume diffusion (Dodson, 1973;
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Lister and Baldwin, 1996; McDougall and Harrison, 1999; Warren et al.,
2012a). Furthermore, the mathematical formulation only strictly applies
for a cooling path that conforms to a shape of 1/T.

Factors such as excess Ar incorporated during crystallisation, most
likely facilitated by fluids (Arnaud and Kelley, 1995; Baxter et al.,
2002; Di Vincenzo and Palmeri, 2001; Foland, 1979; Halama et al.,
2014; Harrison et al., 1985, 2009; Itaya et al., 2009; Roddick et al.,
1980; Ruffet et al., 1995), mixing of two age populations (Beltrando
et al., 2009; Chopin and Maluski, 1980; Dempster, 1992; Di Vincenzo
et al., 2001; Hames and Cheney, 1997; Hammerschmidt and Frank,
1991; Viete et al., 2011), and the "openness" of the grain boundary net-
work (Kelley, 2002; Smye et al., 2013; Warren et al., 2012a) can make
the interpretation of 40Ar/39Ar dates as representing crystallisation,
cooling, or the partial resetting of older ages problematic. Here, "date"
is used to describe apparent 40Ar/39Ar ages that have an equivocal
geological meaning and "age" for those that can be linked to an event
in geological time.

In this study, an inverted Barrovianmetamorphic sequence associat-
ed with a major Himalayan structure, the Main Central Thrust (MCT),
was exploited to investigate how the factors outlined above can
influence the interpretation of 40Ar/39Ar data during Barrovian meta-
morphism and deformation. The inverted metamorphic sequence
preserves metamorphic isograds from biotite to sillimanite grade. This
represents an environment that is appropriate for the systematic inves-
tigation into howmetamorphic pressures and temperatures, fluids, per-
vasive ductile shearing and the kinematic thrusting history impact on
the apparent 40Ar/39Ar ages. Our data show that the 40Ar/39Ar popula-
tions progressively get younger, and within-sample age dispersion
decreases with increasing distance and temperature through the se-
quence. Micas appear to require prolonged periods at moderately high
metamorphic temperatures to yield robust cooling ages that can be
used to estimate a cooling rate and exhumation history.

2. Geological setting

During the Eocene to recent collision of India and Asia (e.g. Najman
et al., 2010 and references therein), Indian crustal rocks were buried to
depths of ~20–30 km, extruded by thrusting along large-scale faults
such as the Main Central Thrust (MCT) and finally exhumed to the sur-
face. In the eastern Himalayan region of Darjeeling-Sikkim (collectively
known as the Sikkim Himalaya), the MCT is exposed as a large re-
entrant (N50 km across strike; Fig. 1). In this region, the MCT separates
the overlying Paleoproterozoic–Neoproterozoic (~2500–800 Ma detri-
tal zircon signature) Greater Himalayan Sequence metasediments
(GHS) from the underlying Paleoproterozoic (~3600–1800 Ma detrital
zircon signature) Daling Lesser Himalayan Sequence (meta)sediments
(LHS) across a zone of ductile shear (Mottram et al., 2014a). Samples
were collected through a transect of this zone of deformation and
inverted Barrovian metamorphism developed in the MCT zone, within
the Daling Formation LHS rocks (Fig. 1; Mottram et al, 2014a,b). This
inverted Barrovian zone consists of an up to 5–10 km thick package of
pelitic schists characterised by a well-developed penetrative schistosity
(Fig. 1 and Supplementary material S2). The peak conditions of meta-
morphism range from ~480–530 °C and 0.5 GPa in the structurally low-
ermost garnet zone, ~510–565 °C and 0.4–0.6GPa in the staurolite zone,
~565–625 °C and 0.6–0.7 GPa in the kyanite zone, ~675 °C and 0.75 GPa
in the sillimanite zone and ~625–700 °C and 0.6–0.9 GPa in the structur-
ally uppermost sillimanite K-feldspar zone (Dasgupta et al., 2004, 2009;
Dubey et al., 2005; Gaidies et al., 2015). Despite preserving mineralogi-
cal assemblages typical of the Barrovianmetamorphic sequence in Scot-
land (Barrow, 1893), the tectonic processes underpinning the formation
of the Sikkim Himalayan MCT zone sequence differ from those operat-
ing during the Caledonian orogeny in Scotland (i.e. Oliver et al., 2000).
Whereas metamorphism in Scotland was related to heating by fault-
related mafic intrusions (i.e. Viete et al., 2011), precise geochronology
shows that the inverted Barrovian sequence associated with the MCT

formed tectonically during ductile deformation. Metamorphism in the
Sikkim Himalaya occurred contemporaneously with deformation dur-
ing the progressive formation of amajor mid-crustal shear zone. During
ductile thrusting, the (cooler) LHS footwall material was progressively
accreted to the (hotter) GHS hanging wall (i.e. Larson et al., 2013;
Mottram et al., 2015). These accretion processes occurred at disparate
times at different structural levels of the MCT zone and along strike in
the Himalaya. In the Sikkim Himalaya prograde–peak metamorphism
occurred between ~14.5 and 10.5 Ma (kyanite–garnet isograds) in the
northern, rear-edge of the exposed thrust zone and between ~21 and
16 Ma (kyanite–staurolite isograds) in the southern leading edge
(Anczkiewicz et al., 2014; Mottram et al., 2014b, 2015). The MCT zone
in the Sikkim Himalaya was folded during formation of a late-stage du-
plex developed in the underlying Buxa LHS rocks, beneath the Ramgahr
thrust, exposing different structural depths of the MCT (Fig. 1;

Fig. 1.Geological map (a) and cross section (b) of the SikkimHimalaya (to scale). Adapted
from Mottram et al. (2014a). Sample locations are shown in inset. Abbreviations: STD =
South Tibetan Detachment, MCT = Main Central Thrust, RT = Ramgarh Thrust, MBT =
Main Boundary Thrust, MHT = Main Himalayan Thrust. GHS = Greater Himalayan Se-
quence, LHS = Lesser Himalayan Sequence, B = Buxa, D = Daling, SW = Siwaliks,
TSS = Tethyan Sedimentary Sequence. Lesser Himalayan Duplex schematic representa-
tion of Bhattacharyya and Mitra (2009). Mineral abbreviations after Whitney and Evans,
2010. The zone of deformation associated with the MCT is shown as a hatched area.
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Bhattacharyya and Mitra, 2009; Mottram et al., 2014b). The timing of
final exhumation of the MCT zone in the Sikkim Himalaya is poorly
constrained, but it is thought to have occurred at ~10 Ma in the
neighbouring Bhutan Himalaya (McQuarrie et al., 2014).

3. Petrography and mineral chemistry

3.1. Electron microprobe methods

Major-elementmineral chemistrywas characterised in polished sec-
tions using a Cameca SX100 (5 wavelength dispersive spectrometers)
Electron Micro-Probe Analyser (EPMA) at The Open University, UK, fol-
lowing themethod of Mottram et al., 2014b (full methods can be found
in Supplementary material S1). Chemical formulae were calculated
stoichometrically based on 22 oxygens for biotite and white mica. Re-
sults are presented in Table 1, Fig. 3, and Supplementary data table 1.

3.2. Sample description and mineral chemistry

The MCT transect is a pelite-rich section described in detail by
Mottramet al. (2014b).Metamorphic grade increases from the structur-
ally lowest greenschist-grade sample (12), with 1–2mm clasts of quartz
and feldspar surrounded by ~100 μm grains of white mica (full assem-
blage comprises white mica + quartz + plagioclase + chlorite + zir-
con + apatite + ilmenite + monazite − allanite reaction). Sample 15
is a fine-grained (~100 μm) chlorite–mica phyllite, with a well-
developed penetrative schistosity defined by themicas in an assemblage
of white mica (~100 μm) + quartz + chlorite + ilmenite + zircon +
allanite + xenotime (Fig. 2).

The middle of the section is defined by garnet (staurolite)–mica
schists (samples 16, 17, 19, 20 and 21) with assemblages of
quartz+whitemica+biotite+garnet+ ilmenite±plagioclase (sam-
ple 17, 20) ± chlorite (samples 17, 19, 20) ± K-feldspar (sample 17,
20)± staurolite (sample 16)± apatite (samples 16, 17, 19, 20)± rutile

(samples 17, 19, 20)± tourmaline (samples 17, 19). In general, samples
have a well-developed schistosity, which is weakly crenulated in sam-
ples 16, 17 and 19 and displays a granular texture with several mm-
sized micas (which contain quartz inclusions) in sample 20. Garnet
grains, which display skeletal textures in samples 17 and 21, are gener-
ally wrapped by the main penetrative foliation (defined by mica) and
include micas in their inclusion trails (samples 16, 17, 19, 20, and 21).
In samples 16, 17 and 19, micas have grown within garnet pressure
shadows, demonstrating syn-deformation mica growth. Other samples
preserve textural evidence for multiple mica populations. Subordinate
clusters of white mica and biotite crystals in sample 17 are aligned
oblique to the main foliation (Fig. 2), and sample 19 preserves two dis-
tinct grain sizes; a smaller fabric-forming population and larger
~0.5 mm white mica grains which cross-cut the main foliation (Fig. 2).

The structurally highest kyanite–sillimanite grade sample (sample 22)
comprises the assemblagequartz+plagioclase+whitemica+biotite+
garnet (withmica inclusions)+kyanite+ sillimanite+ tourmaline+ il-
menite + staurolite + rutile + apatite. The sample is a coarse-grained
schist, which displays a weak schistosity defined by white mica (~8 mm
long). Full petrological descriptions and photomicrographs of all samples
can be found in Fig. 2 and in Supplementary material S2.

White mica compositions are fairly uniform within each sample.
For all samples, Si ions per formula unit (pfu) range from 6.2–6.42;
Na/(Na + K) ratios range from 0.02–0.2, and Ti ions pfu range from
0.03–0.10 (Fig. 3; Table 1; Supplementary data table 1).

Biotite compositions are also fairly uniform in all samples, with Si
ions ranging from 5.52 to 6.25 pfu; Ti ions from 0.18 to 0.32 pfu; XFe
(Fe/(Fe + Mg)) from 0.55 to 0.63; and XMg (Mg/(Mg + Fe) from 0.37
to 0.5. The Ti content of both white mica and biotite is lower at lower
metamorphic grade. This is particularly noticeable in biotite analyses,
for which Ti ion content varies from ~0.2 to 0.4 pfu for the higher-
grade samples (samples 19–22) and 0.15–0.2 pfu for the lower
grade samples (samples 16 and 17; Fig. 3; Table 1; Supplementary
data table 1).

Table 1
Average chemical composition of white mica (WM) and biotite (Bt) grains dated in each sample. Full dataset in Supplementary material S2.3 and in supplementary data.

Sample 12 15 16 16 17 17 19 19 20 20 21 21 22 22

WM WM WM Bt WM Bt WM Bt WM Bt WM Bt WM Bt

SiO2 45.73 46.19 46.15 35.72 46.71 36.42 47.52 35.75 46.51 35.02 48.60 35.27 46.19 35.82
TiO2 0.50 0.26 0.40 1.51 0.61 1.57 0.99 2.63 1.02 2.74 0.87 2.76 0.88 2.54
Al2O3 29.04 33.00 34.05 18.55 34.15 18.13 33.44 18.94 34.00 18.67 32.62 17.96 34.56 19.46
Cr2O3 0.02 0.01 0.02 0.02 0.02 0.00 0.03 0.02 0.02 0.03 0.02 0.02 0.01 0.03
MgO 1.78 0.85 0.72 8.92 0.99 10.30 1.04 8.41 0.85 7.31 1.25 7.60 0.81 8.60
CaO 0.03 0.05 0.01 0.03 0.03 0.06 0.02 0.05 0.02 0.06 0.00 0.02 0.01 0.05
MnO 0.03 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.14 0.01 0.24 0.01 0.09
FeO 4.46 2.65 1.71 20.08 1.28 18.34 1.52 18.97 1.43 22.00 1.84 21.00 1.19 19.02
Na2O 0.31 0.77 1.12 0.28 1.52 0.21 0.24 0.08 0.77 0.12 0.17 0.09 1.06 0.20
K2O 10.34 9.21 9.42 8.29 8.96 8.89 10.68 8.32 9.82 8.77 11.03 9.41 9.39 8.26
F 0.13 0.13 0.09 0.21 0.09 0.31 0.09 0.22 0.06 0.13 0.11 0.18 0.10 0.23
Cl 0.00 0.02 0.02 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.03 0.00 0.00
Total 92.36 93.15 93.70 93.64 94.35 94.26 95.57 93.40 94.50 95.01 96.52 94.59 94.21 94.29

Cations per 22 O
Si 6.42 6.31 6.25 5.54 6.25 5.59 6.32 5.52 6.24 5.42 6.42 5.49 6.20 5.48
Ti 0.05 0.03 0.04 0.18 0.06 0.18 0.10 0.30 0.10 0.32 0.09 0.32 0.09 0.29
Al 4.80 5.31 5.43 3.39 5.39 3.28 5.20 3.41 5.37 3.40 5.08 3.29 5.47 3.51
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.37 0.17 0.14 2.06 0.20 2.35 0.20 1.91 0.17 1.69 0.25 1.76 0.16 1.96
Ca 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.01
Fe 0.52 0.30 0.19 2.60 0.14 2.35 0.17 2.42 0.16 2.85 0.20 2.73 0.13 2.43
Na 0.08 0.20 0.29 0.08 0.39 0.06 0.06 0.02 0.20 0.04 0.04 0.03 0.28 0.06
K 1.85 1.60 1.63 1.64 1.53 1.74 1.80 1.62 1.68 1.73 1.86 1.87 1.61 1.61
F 0.06 0.05 0.04 0.10 0.04 0.15 0.04 0.11 0.02 0.06 0.05 0.09 0.04 0.11
Cl 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Total 14.18 14.00 14.02 15.62 14.01 15.72 13.89 15.33 13.95 15.54 13.98 15.63 13.98 15.48
Na/Na + K 0.04 0.11 0.15 0.05 0.20 0.03 0.03 0.01 0.11 0.02 0.02 0.02 0.15 0.04
XMg 0.42 0.36 0.42 0.44 0.59 0.5 0.54 0.44 0.52 0.37 0.56 0.39 0.55 0.45
XFe 0.58 0.64 0.58 0.56 0.41 0.50 0.46 0.56 0.48 0.63 0.44 0.61 0.45 0.55
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Fig. 2. Photomicrographs of thin section through crossed polars. Mineral abbreviations after Whitney and Evans (2010). WM = white mica.
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4. P–T conditions

4.1. Average P–T methods

P–T estimates were calculated using the Ti-in-biotite (TiB) calcula-
tion of Henry et al. (2005), the phengite geobarometer of Massonne
and Schreyer (1987), the garnet–biotite thermometer of Bhattacharya
et al. (1992) and the garnet–Al2SiO5–plagioclase (GASP) barometer of
Powell and Holland (1988); summarised in Fig. 4). The precision on
the original TiB calibration is estimated at ±12 °C (Henry et al., 2005)
at high temperatures. A larger uncertainty (±50 °C) was applied in
this study to account for biotite crystallisation outside the 0.3–0.6 GPa
calibration range of the thermometer (cf. Warren et al., 2014). Analysis
of accessory phases (Fig. 5) also allowed additional P–T information to
be obtained for samples lacking the appropriate major phases for aver-
age P–T estimates.

4.2. P–T results

4.2.1. Thermobarometry
The Ti-in-biotite temperatures vary from 545 ± 50 °C for (structur-

ally lowest) sample 16 to 652 ± 50 °C for (structurally highest) sample
22 (Mottramet al., 2014b; Table 2; Fig. 4; Supplementarymaterial S3.1).

The K-feldspar–quartz–phlogopite barometer (Massonne and
Schreyer, 1987) yields white mica pressures of ~0.5 GPa (Table 2) for
samples 17 and 20 (the only samples containing theK-feldspar required
for the calibration).

The garnet–biotite geothermometer yields temperatures ranging
from 530 ± 50 °C for sample 16 to 687 ± 50 °C for sample 22
(Table 2; Fig. 4). A pressure estimate of 0.9 GPawas obtained for sample
22, the only sample that contains an aluminosilicate phase.

4.2.2. Accessory phase analysis
The appearance and disappearance of accessory phases can help

constrain conditions of metamorphism in samples that do not contain
the correct mineral assemblage for conventional P–T modelling. Previ-
ous studies have shown that, at greenschist facies conditions, detrital
monazite (sample 12; Fig. 5 and Supplementarymaterial S3.2) dissolves
to form low-Thmetamorphicmonazite and allanite (Gasser et al., 2012;
Janots et al., 2008; Krenn and Finger, 2007; Rasmussen and Muhling,
2009; Smith and Barreiro, 1990). This texture was observed in sample
12 (Fig. 5), which is therefore inferred to have formed at ~400 °C (cf.
Janots et al., 2007).

Xenotime can similarly form from the breakdown of detrital mona-
zite in Al-rich rocks around the biotite isograd (~430–450 °C; Janots
et al., 2008). This reaction provides temperature constraints on the
formation of sample 15 (Fig. 5; Janots et al., 2008; Smith and Barreiro,
1990).

5. Geochronology

5.1. 40Ar/39Ar methods

Single-grain fusion (sgf), in-situ laser ablation and laser multi-grain
step-heating analyses were performed at The Open University, UK.
Full methods are provided in Supplementary material S1. The benefit
of collecting Ar data by both sgf and step-heatingmethods is that dating
individual grains by sgf can reveal inter-grain age heterogeneity that
may otherwise be masked by step-heating. The sgf dataset thus helps
to provide an explanation for any discordance in step-heating results.

The lowest metamorphic grade samples (samples 12 and 15) were
analysed by in-situ laser ablation on polished slabs, due to the fine-
grained nature of the sample material. Samples 16–22, with grains

Fig. 3. White mica (a) and biotite (b) geochemistry. Errors are encompassed within the
symbols.

Fig. 4. Summary of P–T conditions. Coloured arrows represent the P–T path for each sam-
ple which are approximated from average P–T, Ti-in-biotite, accessory phase analysis and
pseudosection analysis (taken from Mottram et al., 2014b). Temperatures from Ti in
biotite with 50 °C error bars are shown in the bottom panel (independent of pressure).
Ellipses/shaded areas show peak P–T fields from pseudosection analysis for samples 16
and 22 (Mottram et al., 2014b). For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.
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large enough to be separated, were crushed, washed and sieved, and
~20 grains of the least-deformed, most inclusion-free white mica and
biotite grains of ~0.5–1 mm diameter were picked for each sgf and
step-heating analysis (images of samples in Supplementary material
S4.1). Grains were washed in acetone, and distilled water before pack-
ing into aluminium foil packets for irradiation.

All sampleswere irradiated atMcMaster University, Canada. Irradia-
tion flux was monitored using the GA1550 biotite standard with
an age of 99.77±0.11Ma (Renne et al., 2010). Sample J-values (Supple-
mentary data table 2) were calculated by linear interpolation between

two bracketing standards; a standard was included between every
8–10 samples in the irradiation tube.

Ar isotope data were collected using a Nd-YAG 1064 nm infra-red
laser coupled to an automated gas handling vacuum system and admit-
ted into an MAP 215-50 noble gas mass spectrometer. Data were re-
duced using an in-house software package (ArMaDiLo), and plotted
using Isoplot (Ludwig, 2003).

All analyses were corrected for background decay of 37Ar and 39Ar
and neutron-induced interference reactions using correction factors of
(40Ar/39Ar)K = 0.0085; (39Ar/37Ar)Ca = 0.00065 ± 0.0000033 and
(36Ar/37Ar)Ca = 0.000264 ± 0.000001, which were determined from
analyses of K2SO4/ CaF2 salts. All analyses were corrected for machine
background (one measurement for every 1–2 standards/sample mea-
surements); typical values for each sample run are included in Supple-
mentary data table 2. Analyses were also corrected for mass
spectrometer discrimination using a value of 283 for the 40Ar/36Ar
ratio, determined from routine analyses of modern glass. Atmospheric
Ar contents were measurable on larger samples and were generally
b5% of the total 40Ar (Supplementary data table 2). Samples were
corrected for atmospheric Ar contamination using a 40Ar/36Ar ratio of
298.56 (Lee et al., 2006). Data are presented at the 95% confidence
level, all dates are quoted at 2σ and uncertainties on measurements
are 1σ. The 40K/40Ar decay constant of Min et al. (2000) was used
throughout.

For step-heating experiments, plateaux were defined by at least
three consecutive steps containing a minimum of 50% of the total 39Ar
release (e.g. Kula et al., 2010). Where the 39Ar release was b50%, and
therefore the statistical criteria for a plateau age were not met, an
Isoplot (Ludwig, 2003) weighted average of the most concordant
portion of the release spectra was calculated.

5.2. 40Ar/39Ar results

The full white mica and biotite single-grain fusion (sgf) and step-
heating results are summarised in Figs. 6–8 and Table 3. Full data tables,
inverse isochron plots andweighted average calculations and combined
data plots are provided in Supplementary data table 2 and Supplemen-
tary material S4.

The in-situ laser spot analyses of low-grade samples (samples 12 and
15) yielded 40Ar/39Ar dates that vary from 1290 ± 40 Ma to 53 ± 5 Ma
for sample 12 (with an additional meaningless date of 5300 ± 134 Ma)
and between 109 ± 6 Ma and 16 ± 1 Ma for sample 15.

White mica 40Ar/39Ar dates (Figs. 6–8; Table 3) range from 18.96 ±
2.71 Ma to 14.16 ± 1.62 Ma (sgf data), with a weighted average of
16.3 ± 1.3 Ma (MSWD = 0.8) in the lowest-grade sample (sample

Fig. 5. Backscatter images of accessory phases in selected samples.

Table 2
Ti in biotite, average P–T and accessory phase results.

Sample Ti in biotite
(°C)a

Phengite barometer
(GPa)b

Garnet–biotite temperature
(°C)c

GASP pressure
(GPa)d

Accessory phase temperature estimate
(°C)e

Pseudosection peak
fieldf

12 nd nd nd nd ~400 nd
15 nd nd nd nd ~430–450 nd
16 545 nd 531 nd nd ~580 °C/0.8 GPa
17 570 ~0.5 580 nd nd nd
19 649 nd 627 nd nd nd
20 652 ~0.5 630 nd nd nd
21 652 nd nd nd nd nd
22 643 nd 687 0.9 nd ~650 °C/0.8 GPa

nd = not determined due to lack of one or more critical phases.
a Henry et al. (2005) (±50 °C).
b Massonne and Schreyer (1987).
c Bhattacharya et al. (1992) ±50 °C.
d Powell and Holland (1988) ± 0.1 GPa.
e Based on Smith and Barreiro, 1990; Janots et al., 2007 and Janots et al., 2008.
f Published in Mottram et al. (2014b).
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16—analysed for sgf and step-heating analysis); step-heating analysis
yielded discordant release spectra in sample 16. Sample 17 yielded sgf
dates from 17.83 ± 2.44 Ma to 12.07 ± 1.36 Ma, with a weighted aver-
age of 14.4 ± 1.2 Ma (MSWD = 1.9). Step-heating analysis yielded a
statistically identical concordant plateau date of 14.27 ± 0.13 Ma
(MSWD = 1.3, 80% 39Ar). White mica sgf dates in sample 19 range
from 16.34 ± 0.86 Ma to 12.95 ± 0.46 Ma, with a weighted average of
13.7 ± 1 Ma (MSWD = 2.6) and yield a statistically identical step-
heating plateau date of 13.47 ± 0.21 Ma (MSWD = 0.7, 57% 39Ar). In
sample 20, white mica sgf dates range from 14.89 ± 0.90 Ma to
13.12 ± 0.85 Ma, with a weighted average of 13.7 ± 0.5 Ma
(MSWD = 0.6), and yield a statistically identical step-heating plateau
date of 13.36 ± 0.07 Ma (MSWD = 1.2, 99.5% 39Ar). White mica sgf
dates in sample 21 range from 13.32 ± 0.50 Ma to 12.02 ± 0.93 Ma,
with a weighted average of 12.7 ± 0.3 Ma (MSWD = 0.3), and yield a
statistically identical step-heating date of 13.10 ± 0.05 Ma (MSWD =
1.2, 100% 39Ar). In the highest-grade sample (sample 22), white mica
sgf dates range from 14.00 ± 0.88 Ma to 11.99 ± 0.93 Ma, with a
weighted average of 13.3 ± 0.5 Ma (MSWD = 0.5). Step-heating anal-
ysis yielded a statistically identical plateau date of 12.96 ± 0.05 Ma
(MSWD= 1.6, 100% 39Ar).

Biotite 40Ar/39Ar dates (Figs. 6–8; Table 3) range from 79.51 ±
13.32 Ma to 66.25 ± 2.35 Ma in the lowest-grade sample (sample 16),
with a weighted average of 71.0 ± 6.9 Ma (MSWD = 2.8). In sample
17, sgf dates range from 37.38 ± 1.51 Ma to 27.36 ± 1.00 Ma, with a
weighted average date of 31.9 ± 4.0 Ma (MSWD = 9.5). Samples 16
and 17 both yielded discordant step-heating release spectra for biotite.
Biotite sgf dates in sample 19 range from 18.47 ± 1.99 Ma to 9.08 ±
4.40, with a weighted average of 16.0 ± 2.2 Ma (MSWD = 2.6). Step-
heating analysis yielded a plateau date of 10.83 ± 0.34 Ma (MSWD =
1.2, 58% 39Ar). In sample 20, sgf dates range from 19.39 ± 1.43 Ma to
10.67 ± 1.34 Ma, with a weighted average of 12.7 ± 1.2 Ma
(MSWD = 4). Step-heating analysis yielded a discordant release spec-
trum. Biotite sgf dates in sample 21 range from 18.43 ± 6.00 Ma to
9.68 ± 4.74 Ma, with a weighted average of 12.6 ± 1.1 Ma
(MSWD = 0.7). The step-heating analysis yielded a plateau date of
9.26 ± 0.27 Ma (MSWD= 1.8, 79% 39Ar). Sample 22, from the highest
grade in this transect, yielded sgf dates that range from 23.60 ±
3.54 Ma to 15.86 ± 3.04 Ma, with a weighted average of 18.3 ±
1.0 Ma (MSWD = 0.9). Step-heating analysis yielded a discordant re-
lease spectrum.

5.3. Zircon U–Pb methods

Zirconwas analysed using aNuPlasmaHRmulti-collector inductive-
ly coupled plasma mass spectrometer (MC-ICP-MS) (Nu Instruments,
Wrexham, UK) and a UP193FX (193 nm) excimer or UP193SS
(193 nm) Nd:YAG laser ablation system (New Wave Research, UK), at
The NERC Isotope Geosciences Laboratory (NIGL), UK. Analyses follow-
ed the method of Mottram et al. (2014a); full analytical conditions are
given in Supplementary material S1. All data, quoted at the 2σ confi-
dence level, are shown in Supplementary data table 3.

5.4. U–Pb results

U–Pb zircon data for sample 20 are shown in Fig. 9 and all zircon im-
ages shown in Supplementary material S5. Zircon rims yield ages that
range from ~21 to 16 Ma. These data complement a published U–Th–
Pb monazite dataset from additional samples collected from the same
transect (Mottram et al., 2014b; Table 3).

6. Discussion

6.1. Critical evaluation of the data

Both white mica and biotite 40Ar/39Ar populations get younger with
increasing up-section temperature (Figs. 6–8). Micamats from the low-
est structural levels (samples 12 and 15), yield anomalously old dates
that almost certainly do not relate to the timing of the Himalayan
orogen (discussion point 1, Fig. 6; Section 6.1.1). These samples
underwent a relatively short period of peak metamorphic heating at
~16 Ma, under temperature conditions of ~400 °C (Mottram et al.,
2014b). Further up-section, above the garnet isograd (~580 °C; samples
16–17), the fabric-forming white mica population yield mean sgf dates
of 16.2 ± 3.9 Ma, which overlap with U–Pb ages, indicating that the Ar
dates could represent crystallisation ages (discussion point 2, Fig. 6;
Section 6.1.2). These samples, however, yield highly dispersed
40Ar/39Ar dates (~5 Ma in white mica and ~9–13 Ma in biotite —
Table 3 and Figs. 6–8), and discordant step-heating spectra, suggesting
a source of excess Ar, from a retained "Ar memory" (discussion point
4, Fig. 6; Section 6.1.4). Biotite sgf and plateau dates alternate between
yielding older (samples 16, 17, and 22) and younger (samples 19–21)

Fig. 6. Summary of 40Ar/39Ar mica and U–Pb zircon data. Monazite U–Th–Pb data taken fromMottram et al. (2014b). Sample 12 is plotted according to right-hand scale. Error bars are 2σ
and incorporate uncertainties in J-values.
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dates than their white mica counterparts, a trend possibly explained by
the influence of deformation or contamination by extraneous Ar (dis-
cussion points 3–4, Fig. 6; Sections 6.1.3–4). In the structurally highest
parts of the section (samples 19–22), which experienced prolonged pe-
riods at temperatures of ~650 °C between ~21 and 16 Ma (zircon data
from this study; Mottram et al., 2014b), white mica 40Ar/39Ar sgf and
step-heating data consistently yield narrow age populations (mean
fabric-forming white mica sgf dates of 13.2 ± 1.3 Ma) and plateaux at
ca. 13 Ma. As these grains experienced temperatures conducive for dif-
fusive, open-system cooling, these dates are interpreted as representing
cooling ages (discussion point 5, Fig. 6; Section 6.1.5). Our results sug-
gest that both the residence time and thermal conditions experienced
by micas are critical for open-system behaviour.

6.1.1. Detrital ages
The lowest-grade samples (samples 12 and 15), yield dates that are

pre-Himalayan, and in the case of sample 12, clearly anomalous (discus-
sion point 1, Fig. 6). Some individual dates from samples 12 and 15may
represent detrital crystallisation ages, or partially reset detrital ages,
however, these dates are inconsistentwith ages obtained fromother de-
trital geochronometers such as zircon (Mottram et al., 2014a), and dis-
similar to any previously known geological events in the Himalaya. The
analyses carry large uncertainties due to the low volumes of Ar release,
likely caused by a lack of spatial precision on the fine-grained mats and

consequent coeval analysis of low-Kmaterials such asfluid inclusions or
quartz (Supplementary data table 2). This is potentially the cause of
both the erroneous results and the large errors, although we cannot
rule out contamination of these samples by inherited or excess Ar.

6.1.2. Crystallisation ages
Rocks within the MCT shear zone experienced a prolonged (sev-

eral Ma) period of coeval metamorphism and deformation, as evi-
denced by the ~21–16 Ma prograde to peak monazite ages reported
by Mottram et al. (2014b), constraining the timing of the high-
temperature portion of the metamorphic cycle. Textural evidence sug-
gests that micas were present and stable in all samples throughout
the metamorphic and deformation history of the MCT. The yielded
range of sgf dates (Fig 7.) could therefore represent mica crystallisation
ages throughout the prograde, peak and retrograde metamorphic
history.

Inclusions of biotite andwhitemica in garnet (samples 16, 17, 19, 20,
21, and 22) suggest that bothwere present in the assemblage during the
prograde evolution. Both white mica and biotite are the dominant
fabric-forming phase in all samples. Micas wrapping around garnets
and subordinate post-kinematic cross-cutting grains provide textural
evidence for mica forming mainly as part of the thermal peak
assemblage.

Fig. 7. Detailed summary of white mica and biotite single-grain fusion data. White mica grains are shown as diamonds, biotite grains as boxes. Error bars are 2σ and incorporate uncer-
tainties in J-values. Garnet, kyanite and sillimanite isograds are shown in red and temperature constraints are approximated from P–T data summarised in Fig. 4. For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.
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There is little chemical variation within and between micas from
the same sample, with variations only existing between samples
formed at different temperatures (particularly in Ti content). This
suggests that micas within each sample either continuously recrys-
tallised during the prograde–retrograde path, or that they all formed
in equilibrium within a given sample. The chemical composition of

the fabric-forming micas is consistent with growth at peak condi-
tions because (i) at lower structural levels there is consistency
between Ti-in-biotite and garnet–biotite thermometry results (i.e.
sample 16), and (ii) at higher structural levels, Ti-in-biotite temper-
atures are consistent with pseudosection peak fields (i.e. sample 22;
Table 2; Mottram et al,., 2014b). A lack of high-spatial (intragrain,

Fig. 8. Summary ofwhitemica and biotite 40Ar/39Ar step-heating data. Error bars are 2σ and incorporate uncertainties in J-values. Plateaus are defined by amount of gas shown as percent-
age. Weighted averages are calculated for the ‘plateau’ regions of each sample array using Isoplot (Ludwig, 2003; Supplementary material S4.3).
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in-situ) 40Ar/39Ar data means that linking age to textural location is
impossible.

In-situ analyses of white mica mats in sample 15, white mica
separates from samples 16 and 17, and biotite separates from sample
19 yield Ar dates that, on average, are younger than the monazite ages
(discussion point 2, Fig. 6), and are thus more consistent with either
an interpretation of mica (re)crystallisation during peak conditions or
post-peak recrystallisation (e.g. Dunlap, 1997; Dunlap et al., 1991;
Kirschner et al., 1996). Fine-grained mica mats within sample 15 pro-
vide textural evidence for possible recrystallisation. This sample, how-
ever, also yields a range of older sgf dates, the oldest of which is too
old to be interpreted as a crystallisation age, yet not old enough to be
interpreted as a detrital age (~109 Ma). Overall these age populations
suggest incomplete degassing of inherited Ar, or contamination by ex-
cess Ar.

6.1.3. Deformation-related ages
It has been shown that deformation of the crystal lattice can cause

dislocations within grains that can reduce the diffusion length scale
for 40Ar in a grain (Cosca et al., 2011), act as a network for intragrain
loss of radiogenic Ar (Kramar et al., 2001), act as a pathway for the in-
gress of external 40Ar, and provide a trapping mechanism for internal
40Ar (Reddy et al., 2001). Post-crystallisation deformation could there-
fore play an important role in the efficiency of Ar removal, and provide
a mechanism for perturbing the Ar concentrations in the micas. Micro-
structural deformation leading to the trapping of 40Ar may have oc-
curred in some of the Sikkim Himalayan rocks. There is however scant
microtextural evidence for mica deformation; samples 16–19 contain
a crenulated cleavage, but individual grains are largely undeformed. In
sample 22 undulose extinction textures present in larger biotite and
white mica grains may provide an explanation for some of the anoma-
lously old dates yielded by biotite (Fig. 2 and discussion point 3, Fig. 6;
Supplementary material S2.2).

6.1.4. Excess Ar
The sgf data show that biotite grains consistently yield older dates

(samples 16, 17, and 22) and/or a larger dispersion than the white
mica grains in the same sample. This is the antithesis of what would
be predicted on the basis of loss by diffusion, as biotite is suggested to
be less retentive than white mica (McDougall and Harrison, 1999). Bio-
tite commonly yields older ages than white mica grains in Himalayan

Fig. 9. Tera–Wasserburg zirconU–Pb data plot for sample 20 (Ludwig, 2003)with 2σ error
ellipses.
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samples, and thewidely held interpretation is that excess Ar is the cause
(Copeland et al., 1991; Godin et al., 2001; Hubbard and Harrison, 1989;
Macfarlane, 1993; Stüwe and Foster, 2001). Minerals such as biotite,
white mica and chlorite are known to be able to incorporate excess Ar
into their mineral structures, either during crystallisation or due to
post-crystallisation interaction with fluids (Arnaud and Kelley, 1995;
Di Vincenzo and Palmeri, 2001; Foland, 1979; Roddick et al., 1980;
Ruffet et al., 1995). Biotite and chlorite are probably the largest sink
for grain-boundary-hosted Ar, as they have relatively open crystal
lattices and are thus the most receptive to incorporation of external Ar
(Jackson et al., 2013; Wartho et al., 2013). White mica can also incor-
porate excess Ar into its structure, but likely in less significant
amounts than coexisting biotite (Brewer, 1969). The older and
more dispersed dates in biotite compared to those obtained from
white mica therefore suggest that excess Ar was prevalent in the grain
boundary network at temperatures below the white mica TC. Alterna-
tively, as solubility of Ar in biotite is much greater than for white mica
the biotite may have been preferentially contaminated by excess Ar
during (re)crystallisation, (e.g. Brewer, 1969; Dahl, 1996; Roddick
et al., 1980).

The presence or absence of excess Ar may be assessed by plotting
step-heating data on inverse isochron plots (Supplementary material
S4.2). The initial 36Ar/40Ar ratios of our samples generally lie within un-
certainty of the atmospheric ratio of 0.00335 ± 0.000006 (Lee et al.,
2006). However, low 36Ar concentrations in most analyses have led to
large uncertainties on the initial 40Ar/36Ar ratio, thus making these
plots of limited interpretive use.

The difference between the biotite andwhitemica 40Ar/39Ar popula-
tions is much larger at the lower structural levels than at the upper
levels (samples 16–17; discussion point 4, Fig. 6). Fluids produced
during metamorphic reactions could have transported Ar (produced
elsewhere) into the local rock volume (Arnaud and Kelley, 1995; Di
Vincenzo and Palmeri, 2001; Foland, 1979; Roddick et al., 1980). Differ-
ential fluid flow within the shear zone can explain the trend of older
dates at structurally lower levels.

6.1.5. Thermal diffusion
The TC approach (Dodson, 1973), is based on assumptions about the

diffusion characteristics of Ar relative to the sample P–T history. The cal-
culation assumes that cooling starts from infinite temperatures and that
40Ar/39Ar ages are independent of the P–T history of the grain prior to
reaching the TC. However empirical studies have demonstrated that
the temperature history, and more specifically the residence time,
metamorphic P–T conditions, the temperature–time path geometry,
pressure conditions and grain size, can exert major influence on the
40Ar/39Ar ages obtained (Ganguly and Tirone, 1999; Lister and
Baldwin, 1996; Viete et al., 2011; Warren et al., 2012a). For example, a
grain can yield a date that is older than the time at which the rock
reached peak temperature conditions if it grew along the prograde
path, and/or contained inherited or excess Ar, and/or only experienced
high temperatures (defined as N350 °C by Lister and Baldwin, 1996)
for transient (b5 Ma) periods of time.

Ti concentration in bothmicas varies notably from lowest to highest
structural levels (0.03–0.1 pfu and 0.18–0.3 pfu respectively). The sig-
nificant increase in the Ti concentration, and thus by inference, temper-
ature, occurs around the staurolite isograd, after sample 16, which
matches similar findings in the Barrovian metamorphic sequence in
Scotland (Viete et al., 2011). The shift in Ti content also coincides with
an increased duration of the metamorphic cycle, recorded by U–Pb ac-
cessory phase dates and a narrowing of the difference between
40Ar/39Ar white mica and biotite sgf dates. This reinforces the previous
observations that both the duration of metamorphism and the temper-
atures reached by samples are critical factors affecting the loss of Ar
from mica.

The sgf data show that thewidest spread in 40Ar/39Ar dates is obtain-
ed from samples at structurally lower levels. These mid-temperature

range samples (16–17; garnet–staurolite grade) reached temperatures
of ~580 °C and display a single monazite age population (Mottram
et al., 2014b), suggesting a timescale of b1 Ma for the high-T part of
the metamorphic cycle. These samples yield an ~5 Ma spread of sgf
40Ar/39Ar dates in white mica and N10 Ma in biotite (Figs. 6–8;
Table 3). The biotite in particular, provides unreasonably old
crystallisation or cooling ages when compared to the temporal evolu-
tion of the wider Himalaya (~15–11 Ma white mica Ar cooling ages in
neighbouring Nepal and Bhutan regions e.g. Godin et al., 2001; Stüwe
and Foster, 2001). Diffusion modelling suggests that 0.5 mm white
mica grains experiencing conditions of ~550 °C and 0.5 GPa for b1 Ma
will retain ~5–20% of their 40Ar in an open system (Warren et al.,
2012a; see Supplementary material S6.5 for comparison of grain sizes/
pressure conditions). The model results suggest that the observed
spread of white mica sgf dates from the lower grade samples may
have therefore been caused by the retention of radiogenic and/or
inherited 40Ar during the metamorphic cycle.

In contrast, samples from the upper parts of the section (samples
19–22, discussion point 5, Fig. 6), reached temperatures of ~650 °C
and yield monazite ages suggesting residence at these conditions from
~21 to 16 Ma (Mottram et al., 2014b). These samples all yield white
mica plateau ages of ~13 ± 0.3 Ma, and a relatively small spread in
white mica sgf dates of only ~2 Ma. A dispersion of this magnitude
would be expected due to diffusive differences caused by grain size var-
iations (Supplementary material S6.2). Biotite grains yield a spread in
40Ar/39Ar dates of N4 Ma (between ~13.8 and 9.3 Ma). Inverse isochron
plots from biotite step-heating experiments in samples 21 and 22 indi-
cate initial 36Ar/40Ar concentrations in excess of atmospheric Ar, sug-
gesting that these grains may have incorporated excess Ar during
cooling (Supplementary Figures S4.2.2.8–10). Nevertheless, both the bi-
otite and white mica ages are broadly consistent with other temporal
constraints on the cooling evolution of the MCT zone (e.g. Godin et al.,
2001; Stüwe and Foster, 2001). Diffusion modelling shows that any
white mica grain size between 0.1 and 1 mm held at conditions of
N600 °C and N0.5 GPa for N0.5 Ma retain b5% 40Ar in an open system
(Warren et al., 2012a). These conditions therefore allow for more effi-
cient diffusion.

The lower structural levels of the inverted metamorphic zone be-
neath the MCT did not therefore reach sufficiently high temperatures
long enough for micas to efficiently degas. These samples are likely to
have retained an "Ar memory". In contrast, the higher-grade samples,
which experienced longer residence times at higher P–T conditions, ex-
perienced more efficient diffusion and the dates may be more realisti-
cally interpreted as geologically meaningful 40Ar/39Ar cooling ages.

7. Diffusion modelling

In order to understand the exhumation history of the MCT zone in
Sikkim, a series of numerical modelling experiments were conducted
in order to determine the cooling rate that best fits the empirical data.
The modelling approach is not dependent on the assumptions implicit
in the Dodson Tc formulation and therefore represents a less circular
method for estimating rates of cooling.

Forward modelling of Ar diffusion in white mica was undertaken
using the MATLABTM program DiffArg (Wheeler, 1996), following the
method ofWarren et al. (2012a). Model results were used to determine
the best-fit cooling history of samples given their known high tempera-
ture history. Models were run from starting temperatures of 550 °C,
600 °C, and 650 °C (the range of temperatures experienced by
the rocks across the MCT zone), and at cooling rates in the range
30–80 °C Ma−1, over a time period of 20 Ma. The following parameters
were used: a linear cooling rate, a constant pressure of 0.8 GPa (models
were also run at 0.4 GPa, shown in the Supplementary material S6.3),
the white mica diffusion parameters of Harrison et al. (2009), a
Crank–Nicholson solver for the time integration with a time-step of
10 (Wheeler, 1996), a cylindrical diffusion geometry (after Hames
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and Bowring, 1994), and 0.5–1 mm diameter grain sizes. Numerical ac-
curacy of the calculations was maximised by running three models at
three different mesh sizes and then regressing the bulk ages to the
zero mesh size intercept (Warren et al., 2012a). Results are presented
in Fig. 10 and in Supplementary material S6.

7.1. Model uncertainties

The diffusionmodel input parameters have associated uncertainties,
the largest of which is the uncertainty in the activation energies. This
uncertainty creates a systematic error, which can shift the modelled
ages by up to ~±4 Ma depending on the modelled cooling rate
(Warren et al., 2012b).

All modelswere calculated assuming linear cooling from the starting
temperatures. However, as the samples were exhumed in a thrust zone,
it is likely that their actual cooling history was non-linear. In this dy-
namic environment hot rocks were steadily thrust over rocks in the rel-
atively colder footwall. Cooling rates may therefore have increased
through time as the rocks were progressively exhumed and gradually
juxtaposed next to cooler material. A faster initial cooling rate would
have the effect of reducing the time gap between the U–Pb and Ar
ages. The cooling rates estimated here are therefore minima.

Themajority of models in this studywere run at pressure conditions
of 0.8 GPa, following the pseudosectionmodelling approach of Mottram
et al. (2014b). A subset of models were run at a pressure of 0.4 GPa to
assess the possibility that micas formed under lower pressure condi-
tions (i.e. Gaidies et al., 2015; phengite barometry in this study). The dif-
ference in pressure resulted in a 0.2–0.4Ma bulk age difference,which is
within the range of the analyticalmeasurement uncertainties, andwith-
in the uncertainty of the linear regression of the experimental diffusion
data (Harrison et al., 2009; Supplementary material S6.3). The results
are therefore relatively insensitive to the model pressure, especially
when compared to the uncertainties in the diffusion parameters. Like-
wise, modelling the Ar diffusion in micas as spheres (cf. Harrison et al.,
2009) rather than as cylinders (cf. Hames and Bowring, 1994) changes
the resultingmodel ages by b10% (cf. Huber et al., 2011; Supplementary
material S6.4).

Grains of ~0.5–1 mm diameter were selected for both 40Ar/39Ar
single-grain and step-heating experiments, models were therefore
based on diffusion radii of 0.25 mm and 0.5 mm. As grains picked for
analysis could have represented broken parts of larger crystals, there re-
mains some uncertainty regarding the exact size of the original grains. A
few subsidiary models were run using differing grain sizes (0.25–2 mm
diameter) to determine the sensitivity of the bulk cooling age to grain
size (see data in Supplementary material S6). A difference of 0.25 mm
diameter produces a theoretical 1–2 Ma age dispersion. The difference
in grain size may therefore explain why different samples (with dispa-
rate grain size populations) yield differing spreads in age. However
the N5 Ma dispersion of white mica 40Ar/39Ar dates obtained from the
lower-grade samples cannot be explained entirely by grain size varia-
tion, possible alternative causes include unresolvable contamination
by extraneous Ar, or influence from inherited ages.

7.2. Modelling results and discussion

Plots of age difference between starting time and model Ar age vs.
cooling rate were produced for the three modelled starting tempera-
tures (550 °C, 600 °C and 650 °C) and each grain size (0.5 and 1 mmdi-
ameter; Fig. 10). Larger age differences, of up to ~6 Ma, were obtained
for slower cooling rates, hotter starting temperatures and smaller
grain sizes.

The time difference between the peakmetamorphic age and cooling
was determined from 40Ar/39Ar dates and U–Pb data presented in Fig. 6
and Table 3. The youngest monazite and zircon ages were taken to rep-
resent the timing atwhich cooling initiated (afterMottramet al., 2014b;
2015). The white mica plateau ages from samples 19–22, and the youn-
gest ages in lowest-grade samples (samples 16–17) were taken to rep-
resent the cooling ages.

At structurally higher levels, white mica yields younger ages than
monazite and zircon, a pattern which should be expected from the rel-
ative closure temperatures of zircon at ~900 °C (Cherniak and Watson,
2001), monazite at ~750 °C (Spear and Parrish, 1996), and white mica
at ~470 °C (Harrison et al., 2009). At lower metamorphic grades, the
U–Pb and 40Ar/39Ar ages largely overlap, however the youngest white
mica sgf dates (samples 16–17) are ~1.7 Ma younger than the peak
metamorphic monazite ages (Table 3). The difference between U–Pb
and 40Ar/39Ar ages for the higher-grade samples (samples 19–22),
ranges between 2.6 and 2.9 Ma (Table 3). All samples are consistent
with grain-size-dependent cooling rates between 50 °C Ma−1 and
80 °C Ma−1 (Fig. 10).

8. Geological implications

8.1. Exhumation of the MCT zone in the Sikkim Himalaya

In the Sikkim Himalaya, metamorphism within the MCT zone was
caused by the thrusting of hotter (GHS) material over colder (LHS) ma-
terial in a pervasive ductile shear zone (i.e. Le Fort, 1975). Deformation

Fig. 10. Summary of Diffarg white mica diffusion model results. Models were run for
(a) 0.5 mm and (b) 1 mm grain diameter, and start temperatures of 550 °C, 600 °C and
650 °C and were run at a variety of linear cooling rates from 30 to 80 °C Ma−1, shown
on the x-axis. The age difference between the age at peak temperature and the model
bulk Ar age is shown on the y-axis (Table 2). Grey boxes represent the average age differ-
ence between U–Pb zircon or monazite ages (age at peak temperature) and the 40Ar/39Ar
single-grain fusion or step-heating plateau "cooling ages" for each sample set (samples 17/
19–22).

48 C.M. Mottram et al. / Lithos 238 (2015) 37–51



penetrated down from the original thrust surface, through the thrust
zone, progressively underplating material from the (LHS) footwall into
the (GHS) hanging wall (Larson et al., 2013; Mottram et al., 2014b).
The rocks at different levels within the shear zone therefore preserve
slightly different thermal histories; rocks at the top of the shear zone ex-
perienced higher grades of metamorphism for more prolonged periods
and slightly earlier than rocks at the base (Mottram et al., 2014b). This
diachroneity could have caused micas to crystallise and recrystallise at
different times through the section. However the inverse age relation-
ship betweenmica andmonazite ages (Fig. 6; mica dates young up-sec-
tion, whilst monazite ages decrease in spread down section; see also
Anczkiewicz et al., 2014; Mottram et al., 2014b), suggests that mica
dates are unlikely to represent crystallisation ages across the entire
metamorphic sequence. The rocks at the structurally highest levels of
the inverted metamorphic zone are here considered to yield the most
informative 40Ar/39Ar cooling ages.

Cooling of theMCT zonewas initiated by tectonicmovementmigrat-
ing from the MCT to the structurally lower Ramgarh thrust (RT) and
Lesser Himalayan Duplex (LHD) during the mid-late Miocene
(Bhattacharyya and Mitra, 2009). The formation of the LHD, coupled
with erosion at the surface, caused exhumation, uplift and eventual ex-
posure of the MCT rocks. Our cooling ages provide some of the first
timing constraints on the formation of the LHD in the Sikkim Himalaya.

8.2. Comparisons along the Himalaya

The cooling data from the Sikkim Himalaya can be compared with
other samples along strike to understand how the rocks in the immedi-
ate footwall of the MCT exhumed along the orogen. White mica
40Ar/39Ar plateau ages of c.13 Ma from samples 19–22 are consistent
with cooling ages of c. 11–14 Ma nearby in the Bhutan Himalaya
(McQuarrie et al., 2014; Stüwe and Foster, 2001). In the central
Himalaya, cooling ages from the MCT zone range from ~15.5 to 2 Ma
(Arita et al., 1997; Copeland et al., 1991; Godin et al., 2001; Hubbard
and Harrison, 1989; Macfarlane, 1993; Vannay et al., 2004), suggesting
either that exhumation of the MCT zone occurred later in the central
part of the orogen, or that differential LHD formation and erosion
along strike exposed different structural levels of the fault (e.g.
Mottram et al., 2014b).

8.3. Coeval movement on structures?

The South Tibetan Detachment (STD) is a normal fault which forms
the northern boundary of the GHS. The (coeval) movement of the STD
and MCT is of key importance for models of extrusion of the GHS in all
Himalayan tectonic models (see reviews of Godin et al., 2006; Harris,
2007; Hodges, 2000). Overall the white mica cooling ages obtained for
the leading-edge of the MCT in the Sikkim Himalaya overlap within
error with the ~13Ma cooling age for the STD in the north of the Sikkim
Himalaya (Kellett et al., 2013), suggesting that exhumation and cooling
occurred simultaneously on both the MCT and STD in the region. An
40Ar/39Ar cooling age of c.13 Ma have been obtained for the STD
throughout the eastern Himalaya (Kellett and Godin, 2009; Kellett
et al., 2013; Leloup et al., 2010), suggesting that the STD was simulta-
neously cooling and exhuming at various along-strike locations, from
eastern Nepal into Bhutan.

8.4. Cooling rates

It has been estimated that cooling rates in theGHSwere rapid during
the early to mid-Miocene, with rates varying between 10 and
60 °C Ma−1 in the GHS of NW India (Vannay et al., 2004), 50 °C Ma−1

in the GHS of Nepal (Godin et al., 2001), and ~150–200 °C Ma−1 in
the Sikkim and Bhutan Himalaya (Kellett et al., 2013; McQuarrie et al.,
2014). Differing cooling rates obtained along strike probably reflect defor-
mation around large-scale structures that accommodated exhumation.

After the initial rapid cooling, it has been suggested that cooling rates
slowed during the Miocene–Pliocene (McQuarrie et al., 2014; Vannay
and Grasemann, 2001), decreasing to 20 °C Ma−1 in NW India (Vannay
et al., 2004), and 7 °C Ma−1 in the Sikkim Himalaya (Kellett et al.,
2013). Our estimated cooling rate of ~50–80 °C Ma−1, between c. 16
and 13 Ma, fits with previous suggestions for mid-Miocene cooling rates
across the GHS of ~50 °C Ma−1. It appears that the mid-Miocene was a
time of rapid thrusting, extrusion and cooling of the rocks within the
MCT zone, with possible simultaneous cooling on both the STD and
MCT in the Sikkim Himalaya, perhaps initiated by deformation migrating
towards the hinterland.

9. Conclusions

40Ar/39Ar data collected froma detailed transect through an inverted
metamorphic sequence reveals important insights into Ar behaviour in
pelitic lithologies during a Barrovianmetamorphic cycle over a range of
temperatures. Single-grain fusion and step-heating data from Sikkim
Himalayan samples reveal that both white mica and biotite age popula-
tions become younger, less dispersed and preserve a narrower age
difference between the two micas as temperature increases. The differ-
ences in the 40Ar/39Ar dates across the MCT section appear to be caused
not by differential cooling histories, but rather by differences in the effi-
ciency of Ar removal. These differenceswere caused by a combination of
diffusion (in)efficiency (related to temperature and time), the influence
of excess Ar in biotite and differences in availability of fluid to remove
any grain-boundary-hosted Ar.

The rocks that experienced a more prolonged period of metamor-
phism at higher temperatures, yield the most geologically reasonable
cooling ages of ~13 Ma. At these P–T conditions, efficient diffusion, al-
lows for minimal retention of 40Ar even during short orogenic cycles
(b5 Ma). Our data therefore provide empirical evidence to support
modelling data, demonstrating that temperatures maintained at
N600 °C over a period of ~5 Ma are needed for mica to record diffusive
cooling ages. This critical temperature is considerably higher than the
documented closure temperature for white mica. Our work therefore
highlights the need to determine the full P–T history and efficiency of
Ar diffusion in order to understand whether an 40Ar/39Ar “date” con-
strains the timing of cooling.

Diffusion modelling results suggest a best-fit cooling rate of
~50–80 °CMa−1 for the highest-grade samples. Our data reveal that de-
spite being buried and metamorphosed at different times throughout
the MCT zone section, samples were simultaneously and rapidly cooled
during exhumation due to the formation of the underlying Lesser Hima-
layan Duplex during the mid-Miocene. Cooling ages from the Sikkim
Himalaya also overlap with ages from the South Tibetan Detachment
in Sikkim, suggesting coeval exhumation along the MCT and STD rocks
at ~13 Ma.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2015.08.018.
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