690 research outputs found

    Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733b

    Full text link
    Oxygen (O) and carbon (C) have been inferred recently to be subsolar in abundance from spectra of the atmosphere of the transiting hot Jupiter HD 189733b. Yet, the mass and radius of the planet coupled with structure models indicate a strongly supersolar abundance of heavy elements in the interior of this object. Here we explore the discrepancy between the large amount of heavy elements suspected in the planet's interior and the paucity of volatiles measured in its atmosphere. We describe the formation sequence of the icy planetesimals formed beyond the snow line of the protoplanetary disk and calculate the composition of ices ultimately accreted in the envelope of HD 189733b on its migration pathway. This allows us to reproduce the observed volatile abundances by adjusting the mass of ices vaporized in the envelope. The predicted elemental mixing ratios should be 0.15--0.3 times solar in the envelope of HD 189733b if they are fitted to the recent O and C determinations. However, our fit to the minimum mass of heavy elements predicted by internal structure models gives elemental abundances that are 1.2--2.4 times oversolar in the envelope of HD189733b. We propose that the most likely cause of this discrepancy is irradiation from the central star leading to development of a radiative zone in the planet's outer envelope which would induce gravitational settling of elements. Hence, all strongly irradiated extrasolar planets should present subsolar abundances of volatiles. We finally predict that the abundances of nitrogen (N), sulfur (S) and phosphorus (P) are of \sim 2.8×1052.8 \times 10^{-5}, 5.3×1065.3 \times 10^{-6} and 1.8×1071.8 \times 10^{-7} relative to H2_2, respectively in the atmosphere of HD 189733b.Comment: Accepted for publication in Astronomy & Astrophysic

    Global Models of Planet Formation and Evolution

    Get PDF
    Despite the increase in observational data on exoplanets, the processes that lead to the formation of planets are still not well understood. But thanks to the high number of known exoplanets, it is now possible to look at them as a population that puts statistical constraints on theoretical models. A method that uses these constraints is planetary population synthesis. Its key element is a global model of planet formation and evolution that directly predicts observable planetary properties based on properties of the natal protoplanetary disk. To do so, global models build on many specialized models that address one specific physical process. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disk (gas and solids), the (proto)planet (solid core, gaseous envelope, and atmosphere), and finally the interactions (migration and N-body interaction). We compare the approaches in different global models and identify physical processes that require improved descriptions in future. We then address important results of population synthesis like the planetary mass function or the mass-radius relation. In these results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Due to their nature as meta models, global models depend on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that global models will in future undergo significant modifications. Despite this, they can already now yield many testable predictions. With future global models addressing the geophysical characteristics, it should eventually become possible to make predictions about the habitability of planets.Comment: 30 pages, 16 figures. Accepted for publication in the International Journal of Astrobiology (Cambridge University Press

    Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate

    Get PDF
    We review recent theoretical progress aimed at understanding the formation and the early stages of evolution of giant planets, low-mass stars and brown dwarfs. Calculations coupling giant planet formation, within a modern version of the core accretion model, and subsequent evolution yield consistent determinations of the planet structure and evolution. Because of the uncertainties in the initial conditions, however, it is not possible to say whether young planets are faint or bright compared with low-mass young brown dwarfs. We review the effects of irradiation and evaporation on the evolution of short period planets and argue that substantial mass loss may have occurred for these objects. Concerning star formation, geometrical effects in protostar core collapse are examined by comparing 1D and 3D calculations. Spherical collapse is shown to overestimate the core inner density and temperature and thus to yield incorrect initial conditions for PMS or young brown dwarf evolution. Accretion is also shown to occur over a very limited fraction of the protostar surface. Accretion affects the evolution of young brown dwarfs and yields more compact structures for a given mass and age, thus fainter luminosities. This can lead to severe misinterpretations of the mass and/or age of young accreting objects from their location in the HR diagram. We argue that newborn stars and brown dwarfs should appear rapidly over an extended area in the HR diagram, depending on their accretion history, rather than on a well defined birth line. Finally, we suggest that the distinction between planets and brown dwarfs be based on an observational diagnostic, reflecting the different formation mechanisms between these two distinct populations, rather than on an arbitrary, confusing definition.Comment: Invited Review, Protostars and Planets V (Hawai, October 2005

    Chemical composition of Earth-like planets

    Full text link
    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.Comment: 3 pages, 4 figures - Accepted for publication in the Bolet\'in de la Asociaci\'on Argentina de Astronom\'ia, vol.5

    Giant Planet Formation, Evolution, and Internal Structure

    Full text link
    The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.Comment: Accepted for publication as a chapter in Protostars and Planets VI, to be published in 2014 by University of Arizona Pres

    The formation of Jupiter by hybrid pebble-planetesimal accretion

    Get PDF
    The standard model for giant planet formation is based on the accretion of solids by a growing planetary embryo, followed by rapid gas accretion once the planet exceeds a so-called critical mass. The dominant size of the accreted solids (cm-size particles named pebbles or km to hundred km-size bodies named planetesimals) is, however, unknown. Recently, high-precision measurements of isotopes in meteorites provided evidence for the existence of two reservoirs in the early Solar System. These reservoirs remained separated from ~1 until ~ 3 Myr after the beginning of the Solar System's formation. This separation is interpreted as resulting from Jupiter growing and becoming a barrier for material transport. In this framework, Jupiter reached ~20 Earth masses within ~1 Myr and slowly grew to ~50 Earth masses in the subsequent 2 Myr before reaching its present-day mass. The evidence that Jupiter slowed down its growth after reaching 20 Earth masses for at least 2 Myr is puzzling because a planet of this mass is expected to trigger fast runaway gas accretion. Here, we use theoretical models to describe the conditions allowing for such a slow accretion and show that Jupiter grew in three distinct phases. First, rapid pebble accretion brought the major part of Jupiter's core mass. Second, slow planetesimal accretion provided the energy required to hinder runaway gas accretion during 2 Myr. Third, runaway gas accretion proceeded. Both pebbles and planetesimals therefore have an important role in Jupiter's formation.Comment: Published in Nature Astronomy on August 27, 201

    A Myc-regulated transcriptional network controls B-cell fate in response to BCR triggering

    Get PDF
    BACKGROUND: The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades. RESULTS: Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively. Comparative genome-wide expression profiling identified 24 genes that discriminated between the early responses of the two cell types to BCR stimulation. Using mice with a conditional Myc-deletion, we validated the microarray data by demonstrating that Myc is critical to promoting BCR-triggered B-cell proliferation. We further investigated the Myc-dependent molecular mechanisms and found that Myc promotes a BCR-dependent clonal expansion of mature B cells by inducing proliferation and inhibiting differentiation. CONCLUSION: This work provides the first comprehensive analysis of the early transcriptional events that lead to either deletion or clonal expansion of B cells upon antigen recognition, and demonstrates that Myc functions as the hub of a transcriptional network that control B-cell fate in the periphery

    Beat Cepheids as Probes of Stellar and Galactic Metallicity

    Get PDF
    The mere location of a Beat Cepheid model in a Period Ratio vs. Period diagram (Petersen diagram) puts very tight constraints on its metallicity Z. The Beat Cepheid Peterson diagrams are revisited with linear nonadiabatic turbulent convective models, and their accuracy as a probe for stellar metallicity is evaluated. They are shown to be largely independent of the helium content Y, and they are also only weakly dependent on the mass-luminosity relation that is used in their construction. However, they are found to show sensitivity to the relative abundances of the elements that are lumped into the metallicity parameter Z. Rotation is estimated to have but a small effect on the 'pulsation metallicities'. A composite Petersen diagram is presented that allows one to read off upper and lower limits on the metallicity Z from the measured period P0 and period ratio P1/P0.Comment: 9 pages, 12 color figures (black and white version available from 1st author's website). With minor revisions. to appear in Ap

    Classical Cepheid Pulsation Models: IX. New Input Physics

    Full text link
    We constructed several sequences of classical Cepheid envelope models at solar chemical composition (Y=0.28,Z=0.02Y=0.28, Z=0.02) to investigate the dependence of the pulsation properties predicted by linear and nonlinear hydrodynamical models on input physics. To study the dependence on the equation of state (EOS) we performed several numerical experiments by using the simplified analytical EOS originally developed by Stellingwerf and the recent analytical EOS developed by Irwin. Current findings suggest that the pulsation amplitudes as well as the topology of the instability strip marginally depend on the adopted EOS. We also investigated the dependence of observables predicted by theoretical models on the mass-luminosity (ML) relation and on the spatial resolution across the Hydrogen and the Helium partial ionization regions. We found that nonlinear models are marginally affected by these physical and numerical assumptions. In particular, the difference between new and old models in the location as well as in the temperature width of the instability strip is on average smaller than 200 K. However, the spatial resolution somehow affects the pulsation properties. The new fine models predict a period at the center of the Hertzsprung Progression (PHP=9.65P_{HP}=9.65-9.84 days) that reasonably agree with empirical data based on light curves (PHP=10.0±0.5P_{HP}=10.0\pm 0.5 days; \citealt{mbm92}) and on radial velocity curves (PHP=9.95±0.05P_{HP}=9.95\pm 0.05 days; \citealt{mall00}), and improve previous predictions by Bono, Castellani, and Marconi (2000, hereinafter BCM00).Comment: 35 pages, 7 figures. Accepted for publication in the Astrophysical Journa
    corecore