771 research outputs found

    Time-dependent local Green's operator and its applications to manganites

    Full text link
    An algorithm is presented to calculate the electronic local time-dependent Green's operator for manganites-related hamiltonians. This algorithm is proved to scale with the number of states NN in the Hilbert-space to the 1.55 power, is able of parallel implementation, and outperforms computationally the Exact Diagonalization (ED) method for clusters larger than 64 sites (using parallelization). This method together with the Monte Carlo (MC) technique is used to derive new results for the manganites phase diagram for the spatial dimension D=3 and half-filling on a 12x12x12 cluster (3456 orbitals). We obtain as a function of an insulating parameter, the sequence of ground states given by: ferromagnetic (FM), antiferromagnetic AF-type A, AF-type CE, dimer and AF-type G, which are in remarkable agreement with experimental results.Comment: 9 pages, 11 figure

    Surface effects and statistical laws of defects in primary radiation damage : Tungsten vs. iron

    Get PDF
    We have investigated the effect of surfaces on the statistics of primary radiation damage, comparing defect production in the bcc metals iron (Fe) and tungsten (W). Through molecular dynamics simulations of collision cascades we show that vacancy as well as interstitial cluster sizes follow scaling laws in both bulk and thin foils in these materials. The slope of the vacancy cluster size distribution in Fe is clearly affected by the surface in thin foil irradiation, while in W mainly the overall frequency is affected. Furthermore, the slopes of the power law distributions in bulk Fe are markedly different from those in W. The distinct behaviour of the statistical distributions uncovers different defect production mechanisms effective in the two materials, and provides insight into the underlying reasons for the differing behaviour observed in TEM experiments of lowdose ion irradiation in these metals. Copyright (C) EPLA, 2016Peer reviewe

    The ROCK inhibitor Fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus

    Get PDF
    IndexaciĂłn: Web of Science; Scopus.Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudiltreated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.https://academic.oup.com/ijnp/article/20/4/336/263217

    MicroRNA Profiling and Bioinformatics Target Analysis in Dorsal Hippocampus of Chronically Stressed Rats: Relevance to Depression Pathophysiology

    Get PDF
    Indexación: Scopus.1Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Santiago, Chile, 2National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States, 3Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile, 4Millennium Institute for Integrative Biology (iBio), FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile, 5Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile, 6Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.This study was supported by the following grants: FONDECYT 1120528 (JLF), Fondo Central de Investigación, Universidad de Chile ENL025/16 (JLF), ES090079 (JAC). Research in RG and EV laboratories is funded by Instituto Milenio iBio – Iniciativa Científica Milenio MINECON.Studies conducted in rodents subjected to chronic stress and some observations in humans after psychosocial stress, have allowed to establish a link between stress and the susceptibility to many complex diseases, including mood disorders. The studies in rodents have revealed that chronic exposure to stress negatively affects synaptic plasticity by triggering changes in the production of trophic factors, subunit levels of glutamate ionotropic receptors, neuron morphology, and neurogenesis in the adult hippocampus. These modifications may account for the impairment in learning and memory processes observed in chronically stressed animals. It is plausible then, that stress modifies the interplay between signal transduction cascades and gene expression regulation in the hippocampus, therefore leading to altered neuroplasticity and functioning of neural circuits. Considering that miRNAs play an important role in post-transcriptional-regulation of gene expression and participate in several hippocampus-dependent functions; we evaluated the consequences of chronic stress on the expression of miRNAs in dorsal (anterior) portion of the hippocampus, which participates in memory formation in rodents. Here, we show that male rats exposed to daily restraint stress (2.5 h/day) during 7 and 14 days display a differential profile of miRNA levels in dorsal hippocampus and remarkably, we found that some of these miRNAs belong to the miR-379-410 cluster. We confirmed a rise in miR-92a and miR-485 levels after 14 days of stress by qPCR, an effect that was not mimicked by chronic administration of corticosterone (14 days). Our in silico study identified the top-10 biological functions influenced by miR-92a, nine of which were shared with miR-485: Nervous system development and function, Tissue development, Behavior, Embryonic development, Organ development, Organismal development, Organismal survival, Tissue morphology, and Organ morphology. Furthermore, our in silico study provided a landscape of potential miRNA-92a and miR-485 targets, along with relevant canonical pathways related to axonal guidance signaling and cAMP signaling, which may influence the functioning of several neuroplastic substrates in dorsal hippocampus. Additionally, the combined effect of miR-92a and miR-485 on transcription factors, along with histone-modifying enzymes, may have a functional relevance by producing changes in gene regulatory networks that modify the neuroplastic capacity of the adult dorsal hippocampus under stress. © 2018 Muñoz-Llanos, García-Pérez, Xu, Tejos-Bravo, Vidal, Moyano, Gutiérrez, Aguayo, Pacheco, García-Rojo, Aliaga, Rojas, Cidlowski and Fiedler.https://www.frontiersin.org/articles/10.3389/fnmol.2018.00251/ful

    Conserved Mechanisms of Tumorigenesis in the Drosophila Adult Midgut

    Get PDF
    <div><p>Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and <i>Drosophila</i>'s intestines share many similarities, we decided to explore the alterations induced in the <i>Drosophila</i> midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in <i>Drosophila</i>, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.</p></div

    Measurement of muon plus proton final states in nu(mu) interactions on hydrocarbon at \u3c E-nu \u3e=4.2 GeV

    Get PDF
    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70 degrees and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process

    Usefulness of the organ culture system in the in vitro diagnosis of coeliac disease: A multicentre study

    Get PDF
    Objective. Diagnosis of coeliac disease is based on the presence of villous atrophy which recovers following a gluten-free diet. The presence of circulating antiendomysial antibodies as well as their disappearance after a gluten-free diet supports the diagnosis. It has also been demonstrated that antiendomysial antibodies are detectable in supernatants of cultured intestinal biopsies from patients with coeliac disease. The objective of this study was to compare the histology and antiendomysial antibodies in culture supernatants of intestinal biopsies to validate the in vitro organ culture system as a future diagnostic tool for coeliac disease. Material and methods. Seventy-five antiendomysial serum-positive patients on a gluten-containing diet were evaluated. Patients underwent endoscopy with 5 biopsy fragments: 3 for histology, 1 cultured with and the other without gliadin-peptide activator. Antiendomysial antibodies were evaluated in all culture supernatants. Results. Sixty-eight patients had evidence of villous atrophy, while 73 out of 75 were positive to the organ culture system. The agreement rate between organ culture and histology results was 94%. Conclusions. As all the centres participating in the study obtained good agreement between organ culture and histology results, the new system could be considered a reliable tool for the diagnosis of coeliac disease. Nevertheless, it is possible to highlight cases with an organ culture-positive and -negative histology. This feature could be of considerable interest because, as the sensitivity of organ culture seems to be greater than the initial histology, the new system might be useful in uncertain cases where the risk of missing the diagnosis of coeliac disease is high
    • …
    corecore