21 research outputs found

    Microwave-Assisted Production of Aggregates from Demolition Debris

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sustainable Lighting Layout in Urban Areas: Maximizing Implicit Coverage and Minimizing Installation Cost

    Get PDF
    A key decision in the design of urban lighting is the location of the luminaries that are used to illuminate the specified region. The decision needs to account for coverage requirements identified in certain areas, based on safety considerations and nature of work activity, along with ensuring the cost effectiveness of the installation pattern adopted. In this work, a novel approach is presented via a multi-objective mathematical optimization model that results in a sustainable layout of light poles in urban region. A maximal coverage objective, with implicit demand cover, is formulated as a measure of the social requirement in urban lighting, which models security and safety associated with night-time lighting of the urban region. At the same time, the economical aspect of the layout is considered via minimizing the installation cost of the lighting layout. A realistic case example is then solved using the ϵ-constraint method. A Pareto optimal front for the case considered is constructed and analyzed

    Recent progress in low-carbon binders

    Get PDF
    The development of low-carbon binders has been recognized as a means of reducing the carbon footprint of the Portland cement industry, in response to growing global concerns over CO2 emissions from the construction sector. This paper reviews recent progress in the three most attractive low-carbon binders: alkali-activated, carbonate, and belite-ye'elimite-based binders. Alkali-activated binders/materials were reviewed at the past two ICCC congresses, so this paper focuses on some key developments of alkali-activated binders/materials since the last keynote paper was published in 2015. Recent progress on carbonate and belite-ye'elimite-based binders are also reviewed and discussed, as they are attracting more and more attention as essential alternative low-carbon cementitious materials. These classes of binders have a clear role to play in providing a sustainable future for global construction, as part of the available toolkit of cements

    Estimation and Minimization of Embodied Carbon of Buildings: A Review

    No full text
    Building and construction is responsible for up to 30% of annual global greenhouse gas (GHG) emissions, commonly reported in carbon equivalent unit. Carbon emissions are incurred in all stages of a building’s life cycle and are generally categorised into operating carbon and embodied carbon, each making varying contributions to the life cycle carbon depending on the building’s characteristics. With recent advances in reducing the operating carbon of buildings, the available literature indicates a clear shift in attention towards investigating strategies to minimize embodied carbon. However, minimizing the embodied carbon of buildings is challenging and requires evaluating the effects of embodied carbon reduction strategies on the emissions incurred in different life cycle phases, as well as the operating carbon of the building. In this paper, the available literature on strategies for reducing the embodied carbon of buildings, as well as methods for estimating the embodied carbon of buildings, is reviewed and the strengths and weaknesses of each method are highlighted

    The implementation of BIM in a large European construction company

    No full text
    Background: Information Technology (IT) has reached a level of maturity, where IT can really meet the complexity of the construction industry. IT has reached the ability to support construction not just any more in the facilitating processes as financial services and human resources management (HR), but also to play a key role in the primary process due to the development of the building information modeling (BIM). However, implementation of BIM in a company is still an challenging exercise. Purpose of this paper: The development of an implementation strategy based on the needs of project support. Method: Desk research gives insights in the roles and phases in a project, levels of hierarchy in a company and two case studies in two large European construction companies deliver insight in the actual situation. Results & Discussion: The complexity of BIM implementation will be presented in a clear analysis of BIM for the different roles, activities, phases of an building project. Moreover a BIM implementation approach will be presented useful for small and large construction companies

    Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities

    No full text
    Many cities around the world are facing immense pressure due to the expediting growth rates in urban population levels. The notion of ‘smart cities’ has been proposed as a solution to enhance the sustainability of cities through effective urban management of governance, energy and transportation. The research presented herein examines the applicability of a mathematical framework to enhance the sustainability of decisions involved in zoning, land-use allocation and facility location within smart cities. In particular, a mathematical optimisation framework is proposed, which links through with other platforms in city settings, for optimising the zoning, land-use allocation, location of new buildings and the investment decisions made regarding infrastructure works in smart cities. Multiple objective functions are formulated to optimise social, economic and environmental considerations in the urban space. The impact on underlying traffic of location choices made for the newly introduced buildings is accounted for through optimised assignment of traffic to the underlying network. A case example on urban planning and infrastructure development within a smart city is used to demonstrate the applicability of the proposed method
    corecore