34 research outputs found

    Expression profile of the chromosome 14 Microrna Cluster (C14MC) ortholog in equine maternal circulation throughout pregnancy and its potential implications

    Get PDF
    Equine chromosome 24 microRNA cluster (C24MC), the ortholog of human C14MC, is a pregnancy-related miRNA cluster. This cluster is believed to be implicated in embryonic, fetal, and placental development. The current study aimed to characterize the expression profile of this cluster in maternal circulation throughout equine gestation. The expression profile of miRNAs belonging to this cluster was analyzed in the serum of non-pregnant (diestrus), pregnant (25 d, 45 d, 4 mo, 6 mo, 10 mo), and postpartum mares. Among the miRNAs examined, 11 miRNAs were differentially expressed across the analyzed time-points. Four of these miRNAs (eca-miR-1247-3p, eca-miR-134-5p, eca-miR-382-5p, and eca-miR-433-3p) were found to be enriched in the serum of pregnant mares at Day 25 relative to non-pregnant mares. To further assess the accuracy of these miRNAs in differentiating pregnant (25 d) from non-pregnant mares, receiver operating characteristic (ROC) analysis was performed for each of these miRNAs, revealing that eca-miR-1247-3p and eca-miR-134-5p had the highest accuracy (AUCROC = 0.92 and 0.91, respectively; p < 0.05). Moreover, eca-miR-1247-3p, eca-miR-134-5p, eca-miR-409-3p, and eca-miR-379-5p were enriched in the serum of Day 45 pregnant mares. Among those miRNAs, eca-miR-1247-3p and eca-miR-409-3p retained the highest accuracy as shown by ROC analysis. GO analysis revealed that these miRNAs are mainly implicated in nervous system development as well as organ development. Using in situ hybridization, we localized eca-miR-409-3p in the developing embryo (25 d) and extra-embryonic membranes (25 and 45 d). In conclusion, the present study is the first to elucidate the circulating maternal profile of C24MC-associated miRNAs throughout pregnancy and to suggest that serum eca-miR-1247-3p, eca-miR-134-5p, and eca-miR-409-3p could be used as pregnancy-specific markers during early gestation (25 and 45 d). Overall, the high abundance of these embryo-derived miRNAs in the maternal circulation suggests an embryo-maternal communication during the equine early pregnancy

    Landscape of overlapping gene expression in the equine placenta

    Get PDF
    Increasing evidence suggests that overlapping genes are much more common in eukaryotic genomes than previously thought. These different-strand overlapping genes are potential sense-antisense (SAS) pairs, which might have regulatory effects on each other. In the present study, we identified the SAS loci in the equine genome using previously generated stranded, paired-end RNA sequencing data from the equine chorioallantois. We identified a total of 1261 overlapping loci. The ratio of the number of overlapping regions to chromosomal length was numerically higher on chromosome 11 followed by chromosomes 13 and 12. These results show that overlapping transcription is distributed throughout the equine genome, but that distributions differ for each chromosome. Next, we evaluated the expression patterns of SAS pairs during the course of gestation. The sense and antisense genes showed an overall positive correlation between the sense and antisense pairs. We further provide a list of SAS pairs with both positive and negative correlation in their expression patterns throughout gestation. This study characterizes the landscape of sense and antisense gene expression in the placenta for the first time and provides a resource that will enable researchers to elucidate the mechanisms of sense/antisense regulation during pregnancy

    Transcriptomic Analysis of Equine Chorioallantois Reveals Immune Networks and Molecular Mechanisms Involved in Nocardioform Placentitis

    Get PDF
    Nocardioform placentitis (NP) continues to result in episodic outbreaks of abortion and preterm birth in mares and remains a poorly understood disease. The objective of this study was to characterize the transcriptome of the chorioallantois (CA) of mares with NP. The CA were collected from mares with confirmed NP based upon histopathology, microbiological culture and PCR for Amycolatopsis spp. Samples were collected from the margin of the NP lesion (NPL, n = 4) and grossly normal region (NPN, n = 4). Additionally, CA samples were collected from normal postpartum mares (Control; CRL, n = 4). Transcriptome analysis identified 2892 differentially expressed genes (DEGs) in NPL vs. CRL and 2450 DEGs in NPL vs. NPN. Functional genomics analysis elucidated that inflammatory signaling, toll-like receptor signaling, inflammasome activation, chemotaxis, and apoptosis pathways are involved in NP. The increased leukocytic infiltration in NPL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP3, and MMP8) and apoptosis-related genes, such as caspases (CASP3 and CASP7), which could explain placental separation associated with NP. Also, NP was associated with downregulation of several placenta-regulatory genes (ABCG2, GCM1, EPAS1, and NR3C1), angiogenesis-related genes (VEGFA, FLT1, KDR, and ANGPT2), and glucose transporter coding genes (GLUT1, GLUT10, and GLUT12), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could elucidate placental insufficiency accompanying NP. In conclusion, our findings revealed for the first time, the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during NP, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Galectinology of Equine Pregnancy

    No full text
    Galectins are a family of proteins that bind to glycans, acting in a cytokine-like manner throughout the body. In the majority of mammalians, galectins have been found to be involved in pregnancy maintenance, but few studies have evaluated this in the horse. Therefore, the objective of this study was to examine the expression of various galectins in pregnant and nonpregnant mares. Next-generation RNA sequencing was performed on the chorioallantois and endometrium of healthy pregnant mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4), postpartum chorioallantois (n = 3), and diestrus endometrium (n = 3). In the endometrium, galectin-1 and galectin-13 were found in the highest expression in the nonpregnant mare, with decreasing levels of expression noted throughout gestation. In contrast, galectin-8 and galectin-12 were found to be the lowest in the nonpregnant mare and reached the highest expression levels in mid-gestation before declining as parturition neared. In the chorioallantois, galectin-1, galectin-3, and galectin-3BP were found to have heightened expression levels at 45 d of gestation, with lesser expression levels noted throughout gestation. In contrast, galectin-9, galectin-12, and galectin-13 experienced the highest expression levels in the late-term chorioallantois (300 d/330 d), with lesser expression noted in early- to mid-gestation. Of note, galectin-1, galectin-3BP, galectin-9, galectin-12, and galectin-13 all experienced the lowest expression levels in the postpartum placenta, with heightened expression noted during gestation. In conclusion, galectins appear to be involved in equine pregnancy, and this is dependent on both the tissue within the feto-maternal interface and the specific galectin involved

    Characterization of the placental transcriptome through mid to late gestation in the mare.

    No full text
    The placenta is a dynamic organ which undergoes extensive remodeling throughout pregnancy to support, protect and nourish the developing fetus. Despite the importance of the placenta, very little is known about its gene expression beyond very early pregnancy and post-partum. Therefore, we utilized RNA-sequencing to characterize the transcriptome from the fetal (chorioallantois) and maternal (endometrium) components of the placenta from mares throughout gestation (4, 6, 10, 11 m). Within the endometrium, 47% of genes changed throughout pregnancy, while in the chorioallantois, 29% of genes underwent significant changes in expression. Further bioinformatic analyses of both differentially expressed genes and highly expressed genes help reveal similarities and differences between tissues. Overall, the tissues were more similar than different, with ~ 95% of genes expressed in both tissues, and high similarities between the most highly expressed genes (9/20 conserved), as well as marked similarities between the PANTHER pathways identified. The most highly expressed genes fell under a few broad categories, including endocrine and immune-related transcripts, iron-binding proteins, extracellular matrix proteins, transport proteins and antioxidants. Serine protease inhibitors were particularly abundant, including SERPINA3, 6 and 14, as well as SPINK7 and 9. This paper also demonstrates the ability to effectively separate maternal and fetal components of the placenta, with only a minimal amount of chorioallantoic contamination in the endometrium (~8%). This aspect of equine placentation is a boon for better understanding gestational physiology and allows the horse to be used in areas where a separation of fetal and maternal tissues is essential. Overall, these data represent the first large-scale characterization of placental gene expression in any species and include time points from multiple mid- to late-gestational stages, helping further our understanding of gestational physiology

    Characterization of the placental transcriptome through mid to late gestation in the mare.

    No full text
    The placenta is a dynamic organ which undergoes extensive remodeling throughout pregnancy to support, protect and nourish the developing fetus. Despite the importance of the placenta, very little is known about its gene expression beyond very early pregnancy and post-partum. Therefore, we utilized RNA-sequencing to characterize the transcriptome from the fetal (chorioallantois) and maternal (endometrium) components of the placenta from mares throughout gestation (4, 6, 10, 11 m). Within the endometrium, 47% of genes changed throughout pregnancy, while in the chorioallantois, 29% of genes underwent significant changes in expression. Further bioinformatic analyses of both differentially expressed genes and highly expressed genes help reveal similarities and differences between tissues. Overall, the tissues were more similar than different, with ~ 95% of genes expressed in both tissues, and high similarities between the most highly expressed genes (9/20 conserved), as well as marked similarities between the PANTHER pathways identified. The most highly expressed genes fell under a few broad categories, including endocrine and immune-related transcripts, iron-binding proteins, extracellular matrix proteins, transport proteins and antioxidants. Serine protease inhibitors were particularly abundant, including SERPINA3, 6 and 14, as well as SPINK7 and 9. This paper also demonstrates the ability to effectively separate maternal and fetal components of the placenta, with only a minimal amount of chorioallantoic contamination in the endometrium (~8%). This aspect of equine placentation is a boon for better understanding gestational physiology and allows the horse to be used in areas where a separation of fetal and maternal tissues is essential. Overall, these data represent the first large-scale characterization of placental gene expression in any species and include time points from multiple mid- to late-gestational stages, helping further our understanding of gestational physiology
    corecore