30 research outputs found

    In situ immobilization of CuO on SiO\u3csub\u3e2\u3c/sub\u3e/graphite matrix, modified with benzimidazolium-1-acatate ionic liquid: Application as catechol sensor

    Get PDF
    © 2017 Carbon ceramic material (SiO2/C) was prepared using the sol-gel technique. Copper oxide was in situ synthesized on the pores of the matrix, to ensure homogenous distribution of the electroactive species in the matrix pores. To enhance the conductivity of material, the SiO2/C/CuO was modified with benzimidazolium-1-acetate ionic liquid. The surface area (SBET 432.56 m2/g) and pore volume (0.90 cm3/g) of the material were calculated from BET analysis. SEM images showed compactness of materials, having no phase segregation within the magnification used. The structure of ionic liquid was confirmed using NMR and FTIR analysis. The electrodes as a pressed disk fabricated from SiO2/C, SiO2/C/CuO, and SiO2/C/CuO/IL materials were tested as an electrochemical sensor for catechol determination. Electrochemical impedance spectroscopy has revealed that the SiO2/C/CuO/IL-based sensor assists the charge transfer owing to electron rich density, resonance, and conductance of ionic liquid structural moiety. SiO2/C/CuO/IL electrode exhibits excellent sensitivity, linear response range and low limit of detection (LOD) of 712 ÎŒA ÎŒmol− 1 dm3 cm− 2, 0.2 mM–10 mM and 0.7 × 10− 8 mol L− 1, respectively. The sensor was also tested for the determination of catechol in real samples and gives very good results for its determination

    Evaluation of inhaled nitric oxide (iNO) treatment for moderate-to-severe ARDS in critically ill patients with COVID-19: A multicenter cohort study

    Get PDF
    Background: Inhaled nitric oxide (iNO) is used as rescue therapy in patients with refractory hypoxemia due to severe COVID-19 acute respiratory distress syndrome (ARDS) despite the recommendation against the use of this treatment. To date, the effect of iNO on the clinical outcomes of critically ill COVID-19 patients with moderate-to-severe ARDS remains arguable. Therefore, this study aimed to evaluate the use of iNO in critically ill COVID-19 patients with moderate-to-severe ARDS. Methods: This multicenter, retrospective cohort study included critically ill adult patients with confirmed COVID-19 treated from March 01, 2020, until July 31, 2021. Eligible patients with moderate-to-severe ARDS were subsequently categorized into two groups based on inhaled nitric oxide (iNO) use throughout their ICU stay. The primary endpoint was the improvement in oxygenation parameters 24 h after iNO use. Other outcomes were considered secondary. Propensity score matching (1:2) was used based on the predefined criteria. Results: A total of 1598 patients were screened, and 815 were included based on the eligibility criteria. Among them, 210 patients were matched based on predefined criteria. Oxygenation parameters (PaO2, FiO2 requirement, P/F ratio, oxygenation index) were significantly improved 24 h after iNO administration within a median of six days of ICU admission. However, the risk of 30-day and in-hospital mortality were found to be similar between the two groups (HR: 1.18; 95% CI: 0.77, 1.82; p = 0.45 and HR: 1.40; 95% CI: 0.94, 2.11; p= 0.10, respectively). On the other hand, ventilator-free days (VFDs) were significantly fewer, and ICU and hospital LOS were significantly longer in the iNO group. In addition, patients who received iNO had higher odds of acute kidney injury (AKI) (OR (95% CI): 2.35 (1.30, 4.26), p value = 0.005) and hospital/ventilator-acquired pneumonia (OR (95% CI): 3.2 (1.76, 5.83), p value = 0.001). Conclusion: In critically ill COVID-19 patients with moderate-to-severe ARDS, iNO rescue therapy is associated with improved oxygenation parameters but no mortality benefits. Moreover, iNO use is associated with higher odds of AKI, pneumonia, longer LOS, and fewer VFDs

    Role of L- glutamine and crizanlizumab in sickle cell anaemia painful crisis reduction

    Get PDF
    BackgroundPatients with sickle cell disease, frequently ‎ suffer from intense painful episodes. Till recently hydroxyurea was the only available medical therapy that approved for reduction of painful episodes.AimsTo summarize the available data from randomized controlled trials that aim to evaluate the efficacy of newly approved L-‎glutamine‎ (alters redox state of red blood cells ‎‎[RBCs]) ‎and ‎crizanlizumab (‎(anti-P-selectin)‎)‎ ‎on vaso-occlusive episodes in Sickle cell disease ‎ patients.Methods PubMed, ‎Google Scholar, and EBSCO ‎ databases were ‎‎systematically search for relevant articles. The terms ‎ ‎ ‎ L-glutamine, sickle cell disease, sickle cell ‎anaemia,‎ ‎‎crizanlizumab ‎and vaso-occlusive episodes‎ were used.Results Out of Four-hundred seventy-two records, only three fulfilled the inclusion criteria. Two trials were aimed to evaluate the efficacy of L-glutamine therapy on the frequency of painful crises in sickle cell anaemia patients. Both studies showed that L-glutamine therapy significantly reduce the frequency of VOEs. Only one trial examined the ability of crizanlizumab on VOEs reduction, and showed crizanlizumab successful reduce the occurrence of VOEs.‎ConclusionNewer agent ‎with different mechanism of action, such as ‎L-glutamine, ‎and crizanlizumab may consider if ‎hydroxyurea not effective or not ‎tolerable

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Foerderschwerpunkt Oberflaechen- und Schichttechnologien

    No full text
    Available from TIB Hannover: RO 6006(1993,2) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Cobalt ferrite for direct cracking of methane to produce hydrogen and carbon nanostructure: Effect of temperature and methane flow rate

    No full text
    Cobalt ferrite (CoFe2O4) was used as a catalyst for direct methane cracking. The reaction was accomplished in a fixed bed reactor at normal atmospheric pressure, while gas flow rate (20–50 mL/min) and reaction temperature (800–900 °C) were varied. The fresh CoFe2O4 morphology is sponge-like particle with inverse spinel structure as revealed from SEM and XRD results. The methane conversions and hydrogen formation rate were increased with reaction temperature, while catalyst stability and induction period decreased. Increases of gas flow rate > 20 mL/min led to a decrease the overall catalytic activity of CoFe2O4 for methane cracking. The XRD results of spent catalysts revealed that CoFe alloy was the active phase of methane cracking. TGA analysis showed that the largest amount of deposited carbon was 70.46 % at (20 mL/min, 900 °C), where it was 34.40 % at (50 mL/min, 800 °C). The deposited carbon has the shape of spherical carbon nanostructures and/or nano sprouts as observed with SEM. Raman data confirmed the graphitization type of the deposited carbon

    DFT analysis and bioactivity of 2-((E)-(4-methoxybenzylimino)methyl)phenol and its Ni(II) and Pd(II) complexes

    Get PDF
    This paper reports the synthesis, characterisation and DFT analysis of an N,O bidentate Schiff base, ((E)-(4-methoxybenzylimino)methyl)phenol, (L1c) and its Ni(II) and Pd(II) complexes. The structures were elucidated via elemental analysis, UV–Visible, NMR, IR and single crystal X-ray diffraction. Complexation of L1c with Ni(II) and Pd(II) was observed to induce different degrees of bathochromic effect on n → π∗ and π → π∗ electronic transitions. A comparison of the experimental data of UV–Visible, NMR, IR and X-ray with those calculated using DFT and TD-DFT methods where five hybrid functionals were tested in gas, IEF-PCM and SS-PCM models was also carried out. The results show that the reproduction of maximum absorption bands n → π∗ and π → π∗ is strongly related to the tested hybrid functionals and solvatochromic effects. Relatively good concordance was obtained between experimental and calculated NMR chemical shifts, IR and X-ray parameters. A bioactivity evaluation against HCT116 and Escherichia coli displayed that the parent ligand L1c is a more superior anticancer and antibacterial agent than the positive controls of 5FU and gentamicin respectively. However, both complexes showed poor activity as anticancer agent and no activity observed against tested bacteria

    Photocatalytic Synthesis of Coumarin Derivatives Using Visible-Light-Responsive Strawberry Dye-Sensitized Titanium Dioxide Nanoparticles

    No full text
    This study presents a novel method for the photocatalytic synthesis of 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones (a coumarin derivative) using strawberry dye-sensitized TiO2 (SD-TiO2) under visible light. The synthesis of 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones was achieved through a three-component, one-pot condensation reaction involving 3-acetyl coumarin, aldehydes, and urea, utilizing SD-TiO2 as a reusable and innovative photocatalyst at room temperature. The resulting SD-TiO2 photocatalyst was thoroughly characterized using FT-IR, XPS, XRD, SEM, and BET. The efficacy of SD-TiO2 was evaluated by comparing it to pristine TiO2 in terms of photocatalytic activity, and the optimal conditions for the synthesis process were determined. Notably, the SD-TiO2 photocatalyst exhibited a maximum yield of the compound, reaching up to 96% in just 30 min with a catalyst concentration of 1 mg/mL. This yield surpasses traditional thermal procedures employing reflux conditions, where 1 mg/mL of SD-TiO2 is sufficient to complete the reaction. The resulting 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones were further characterized using 1H-NMR and 13C-NMR. Moreover, the stability of the SD-TiO2 photocatalyst was confirmed through recyclability experiments and spectroscopic characterization, demonstrating its practicality for up to three consecutive reaction cycles
    corecore