19 research outputs found

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    An exploratory analysis of land abandonment drivers in areas prone to desertification

    No full text
    The abandonment of land is a global problem with environmental and socioeconomic implications. An approach to assess the relationship between land abandonment and a large set of indicators was illustrated in the present study by using data collected in the framework of the European Union DESIRE research project from 808 field sites located in 10 study sites in the Mediterranean region, Eastern Europe, Latin America, Africa and Asia. A total of 48 indicators provided information for biophysical conditions and socioeconomic characteristics measured at the plot level. The selected indicators refer to farm characteristics (family status, land tenure, present and previous types of land-use, soil depth, slope gradient, tillage operations) and to site-specific characteristics including annual rainfall, rainfall seasonality and water availability. Classes were designated for each indicator and a sensitivity score was assigned to each class based on existing research or empirically assessing the importance of each indicator to the land abandonment issue. Questionnaires for each process of land degradation were prepared and data were collected at field site level in collaboration with land users. Based on correlation statistics and multivariate analyses more than ten indicators out of 48 resulted as significant in affecting land abandonment in the studied field sites. Among them, the most important were rainfall seasonality, elderly index, land fragmentation, farm size, selected soil properties, and the level of policy implementation. Results contribute to the development of appropriate tools for assessing the effectiveness of land management practices for contrasting land abandonment

    Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach

    No full text
    An approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia. Based on an existing geo-referenced database, classes were designated for each indicator and a sensitivity score to desertification was assigned to each class based on existing research. The obtained data were analyzed for the various processes of land degradation at farm level. The derived methodology was assessed using independent indicators, such as the measured soil erosion rate, and the organic matter content of the soil. Based on regression analyses, the collected indicator set can be reduced to a number of effective indicators ranging from 8 to 17 in the various processes of land degradation. Among the most important indicators identified as affecting land degradation and desertification risk were rain seasonality, slope gradient, plant cover, rate of land abandonment, land-use intensity, and the level of policy implementation

    Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Types of Degradation, Causes, and Implications for Management

    No full text
    Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators. The database described earlier in this issue by Kosmas and others (Environ Manage, 2013) for defining desertification risk was further analyzed to define the most important indicators related to the following degradation processes: water erosion in various land uses, tillage erosion, soil salinization, water stress, forest fires, and overgrazing. A correlation analysis was applied to the selected indicators in order to identify the most important variables contributing to each land degradation process. The analysis indicates that the most important indicators are: (i) rain seasonality affecting water erosion, water stress, and forest fires, (ii) slope gradient affecting water erosion, tillage erosion and water stress, and (iii) water scarcity soil salinization, water stress, and forest fires. Implementation of existing regulations or policies concerned with resources development and environmental sustainability was identified as the most important indicator of land protection

    Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach

    No full text
    An approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia. Based on an existing geo-referenced database, classes were designated for each indicator and a sensitivity score to desertification was assigned to each class based on existing research. The obtained data were analyzed for the various processes of land degradation at farm level. The derived methodology was assessed using independent indicators, such as the measured soil erosion rate, and the organic matter content of the soil. Based on regression analyses, the collected indicator set can be reduced to a number of effective indicators ranging from 8 to 17 in the various processes of land degradation. Among the most important indicators identified as affecting land degradation and desertification risk were rain seasonality, slope gradient, plant cover, rate of land abandonment, land-use intensity, and the level of policy implementatio
    corecore