315 research outputs found

    Pattern and process in Amazon tree turnover, 1976-2001

    Get PDF
    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests

    Traversing the margins of corruption amidst informal economies in Amazonia

    Get PDF
    This article focuses on local idioms of extra-legal economic activity among indigenous Amazonians in eastern Peru, and its overall argument is that these idioms are part of a broader context in which indigenous people are compelled by a variety of factors to act in a seemingly corrupt manner. I further suggest that within such a context these idioms are not confined to the informal economy but are also used to refer to activities that fall within the formal economy, supporting Hart’s (2009) claim that the informal economy is a way of imagining the orthodox economy. I argue that corruption within Amazonian economies is commonly perceived by non-indigenous people as contrasting with the workings of the orthodox economy without proper consideration of the economic conditions and bureaucratic structures that give rise to it. Lastly, I argue that, here, corruption can contravene bureaucracy by restoring the humanity that Herzfeld (1993) claims bureaucracy rejects through its acts of indifference toward individuals

    Is there a role for expectation maximization imputation in addressing missing data in research using WOMAC questionnaire? Comparison to the standard mean approach and a tutorial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standard mean imputation for missing values in the Western Ontario and Mc Master (WOMAC) Osteoarthritis Index limits the use of collected data and may lead to bias. Probability model-based imputation methods overcome such limitations but were never before applied to the WOMAC. In this study, we compare imputation results for the Expectation Maximization method (EM) and the mean imputation method for WOMAC in a cohort of total hip replacement patients.</p> <p>Methods</p> <p>WOMAC data on a consecutive cohort of 2062 patients scheduled for surgery were analyzed. Rates of missing values in each of the WOMAC items from this large cohort were used to create missing patterns in the subset of patients with complete data. EM and the WOMAC's method of imputation are then applied to fill the missing values. Summary score statistics for both methods are then described through box-plot and contrasted with the complete case (CC) analysis and the true score (TS). This process is repeated using a smaller sample size of 200 randomly drawn patients with higher missing rate (5 times the rates of missing values observed in the 2062 patients capped at 45%).</p> <p>Results</p> <p>Rate of missing values per item ranged from 2.9% to 14.5% and 1339 patients had complete data. Probability model-based EM imputed a score for all subjects while WOMAC's imputation method did not. Mean subscale scores were very similar for both imputation methods and were similar to the true score; however, the EM method results were more consistent with the TS after simulation. This difference became more pronounced as the number of items in a subscale increased and the sample size decreased.</p> <p>Conclusions</p> <p>The EM method provides a better alternative to the WOMAC imputation method. The EM method is more accurate and imputes data to create a complete data set. These features are very valuable for patient-reported outcomes research in which resources are limited and the WOMAC score is used in a multivariate analysis.</p

    Fast demographic traits promote high diversification rates of Amazonian trees.

    Get PDF
    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits ? short turnover times ? are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests
    corecore