2,127 research outputs found

    Prediction of physical-chemical and fire hazard characteristics by carbon chain rules. 2. Carboxylic acids

    Full text link
    Investigation of the dependence of physico-chemical and fire hazard properties from the chemical structure of carboxylic acids is carried out. Forecasting of the boiling temperature, the flash point, the temperature and the concentration flammability limits, the heats of combustion and vaporization is performed by the carbon chain rules (CCR). The following empirical equations for the calculation of physico-chemical and fire hazard indices from the conventional carbon chain and from the number of carbon atoms are proposed for the convenience of practical application of the CCR. A comparative analysis of the proposed methods for the flash point calculating and the already known methods of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014 is carried out. It is shown, basically, that the new methods give more accurate calculation results than the comparison design procedures. © Siberian Federal University. All rights reserve

    Rate of steady-state reconnection in an incompressible plasma

    Get PDF
    The reconnection rate is obtained for the simplest case of 2D symmetric reconnection in an incompressible plasma. In the short note (Erkaev et al., Phys. Rev. Lett.,84, 1455 (2000)), the reconnection rate is found by matching the outer Petschek solution and the inner diffusion region solution. Here the details of the numerical simulation of the diffusion region are presented and the asymptotic procedure which is used for deriving the reconnection rate is described. The reconnection rate is obtained as a decreasing function of the diffusion region length. For a sufficiently large diffusion region scale, the reconnection rate becomes close to that obtained in the Sweet-Parker solution with the inverse square root dependence on the magnetic Reynolds number, determined for the global size of the current sheet. On the other hand, for a small diffusion region length scale, the reconnection rate turns out to be very similar to that obtained in the Petschek model with a logarithmic dependence on the magnetic Reynolds number. This means that the Petschek regime seems to be possible only in the case of a strongly localized conductivity corresponding to a small scale of the diffusion region.Comment: 11 pages, 3 figure

    Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

    Get PDF
    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics

    Saturn's dayside ultraviolet auroras:Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field

    Get PDF
    We examine a unique data set from seven Hubble Space Telescope (HST) "visits" that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar "auroral oval" morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending toward noon centered near similar to 15 degrees colatitude, together with intermittent patchy forms at similar to 10 degrees colatitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy postnoon auroras are found to relate to the (suitably lagged and averaged) IMF B-z, being present during all four visits with positive B-z and absent during all three visits with negative B-z. The most continuous such forms occur in the case of strongest positive B-z. These results suggest that the postnoon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly interpreted bifurcated auroral arc structures previously observed in this local time sector in Cassini Ultraviolet Imaging Spectrograph data, whose details remain unresolved in these HST images. One of the intervals with negative IMF B-z however exhibits a prenoon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF dependence in the morphology of Saturn's dayside auroras

    A Rotating Collapsar and Possible Interpretation of the LSD Neutrino Signal from SN 1987A

    Full text link
    We consider an improved rotational mechanism of the explosion of a collapsing supernova. We show that this mechanism leads to two-stage collapse with a phase difference of \sim 5 h. Based on this model, we attempt a new interpretation of the events in underground neutrino detectors on February 23, 1987, related to the supernova SN 1987A.Comment: 18 pages, 3 figures, 9 table

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    A generalized Tullock contest

    Get PDF
    We construct a generalized Tullock contest under complete information where contingent upon winning or losing, the payoff of a player is a linear function of prizes, own effort, and the effort of the rival. This structure nests a number of existing contests in the literature and can be used to analyze new types of contests. We characterize the unique symmetric equilibrium and show that small parameter modifications may lead to substantially different types of contests and hence different equilibrium effort levels

    The class of the locus of intermediate Jacobians of cubic threefolds

    Full text link
    We study the locus of intermediate Jacobians of cubic threefolds within the moduli space of complex principally polarized abelian fivefolds, and its generalization to arbitrary genus - the locus of abelian varieties with a singular odd two-torsion point on the theta divisor. Assuming that this locus has expected codimension (which we show to be true for genus up to 5), we compute the class of this locus, and of is closure in the perfect cone toroidal compactification, in the Chow, homology, and the tautological ring. We work out the cases of genus up to 5 in detail, obtaining explicit expressions for the classes of the closures of the locus of products of an elliptic curve and a hyperelliptic genus 3 curve, in moduli of principally polarized abelian fourfolds, and of the locus of intermediate Jacobians in genus 5. In the course of our computation we also deal with various intersections of boundary divisors of a level toroidal compactification, which is of independent interest in understanding the cohomology and Chow rings of the moduli spaces.Comment: v2: new section 9 on the geometry of the boundary of the locus of intermediate Jacobians of cubic threefolds. Final version to appear in Invent. Mat

    Anti-Pluricanonical Systems On Q-Fano Threefolds

    Full text link
    We investigate birationality of the anti-pluricanonical map ϕm\phi_{-m}, the rational map defined by the anti-pluricanonical system mK|-mK|, on Q\mathbb{Q}-Fano threefolds.Comment: 18 page
    corecore