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Abstract

There are some hydrodynamic equations that, while their parent kinetic equation satisfies fun-

damental mechanical properties, appear themselves to violate mechanical or thermodynamic prop-

erties. This article aims to shed some light on the source of this problem. Starting with diffusive

volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at

the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimon-

tovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local

Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann

equation. The collision integral dominates in the small local Knudsen number regime, which is as-

sociated with the exact traditional continuum limit. We find a sub-domain of the continuum range

which the conventional Knudsen number classification does not account for appropriately. In this

sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model

that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium

thermodynamics.
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I. INTRODUCTION

The Boltzmann kinetic equation is the standard model for dilute gas flows [1]. In its ki-

netic structure, a molecular spatial displacement is presented as a deterministic drift motion.

Approximate solutions to the Boltzmann equation are known to recover the Navier-Stokes-

Fourier model for continuum fluid mechanics. However, “in a gas in which finite departures

from equilibrium are imposed by forces too strong or too rapid to be overcome by collisions, a

satisfactory comparison between kinetic theory and experiments is much harder to achieve”

[2].

Some criticisms of the original Boltzmann model have led to various proposals for mod-

ifications, for example, incorporating a spatial stochastic term [3–5]. In the subsequent

continuum-fluid set of partial differential equations, a spatial stochastic term in the kinetic

model results in an additional mass or volume diffusive term. This term has always been

a source of controversy (see, for example, a review in [3]). Paradoxically, however, when

applied to some non-continuum flows it appears that a diffusive volume-mass model can

capture some non-continuum flow behaviour and resolve some observed paradoxes [3, 6–10].

Considering the derivation of dissipative volume-mass models in the ‘GENERIC’ formalism

[11], Öttinger et al. found there to be incompatibilities with some fundamental mechanical

principles – the most important being local angular momentum conservation [12]. The family

of dissipative volume-mass models investigated in that case was founded on the assumption

of local-equilibrium [13].

In fact there exists an entire class of hydrodynamic models where, even though the parent

kinetic equation appears not to have any mechanical inconsistency, the associated macro-

scopic set of equations does appear mechanically inconsistent. Typical examples include the

class of high order hydrodynamics models obtained as terms beyond Navier-Stokes-Fourier

order when approximating the original Boltzmann kinetic equation. [14–17];

The purpose of the present article is to show that there exists a sub-continuum fluid

domain that is not properly accounted for by the traditional Knudsen number classifica-
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tion. This sub-continuum domain seems to coincide with the traditional slip and transition

regimes, in which matches between experiments and theory have always been difficult to

achieve. A volume-mass diffusion appears to lie within that domain of non-local-equilibrium

flows.

II. AN EXAMPLE OF A DISSIPATIVE VOLUME-MASS MODEL AND ITS IN-

CONSISTENCIES

We consider the following spatial stochastic kinetic model, which can be derived in dif-

ferent ways [4, 18]:

∂f

∂t
+ ξ · ∇f −∇ · κ∇f + Fext · ∇ξf − Iξ(f, f) = 0, (1)

where f ≡ f(t,X, ξ) is the molecular distribution function that depends on time t, molecular

velocity ξ, and position X. The term denoted Iξ(f, f) is the Boltzmann collision integral.

Compared with the Boltzmann kinetic model of a dilute gas, the difference is the third term

on the left-hand-side. This is a molecular spatial diffusion term that arises when accounting

for spatial stochasticity in the kinetic description [4]. The coefficient κ is then a spatial

diffusion coefficient. In our notation in this section, ∇ denotes the spatial gradient operator

and ∇ξ denotes the gradient operator in velocity space; Fext represents external forces such

as gravity but these will be neglected in this paper.

A. Macroscopic flow properties

Macroscopic mass-density ρ(t,X) and macroscopic flow velocity U(t,X) may be defined

through,

ρ =

∫
Mf(t,X, ξ)dξ, (2)

and

ρU =

∫
Mξf(t,X, ξ)dξ. (3)
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Then the peculiar velocity corresponds to,

C = ξ − U, (4)

so that the internal energy ein(t,X) and the macroscopic momentum and energy diffusion

flux tensor and vector, Pij(t,X) and q(t,X), respectively, can be associated via:

ρein =

∫
1

2
C2fdξ, Pij =

∫ ∫
CiCjfdξ, q =

∫
1

2
C2Cfdξ. (5)

B. A macroscopic continuum set of equations

Multiplying the stochastic kinetic equation (1) by M,Mξ,Mξ2/2, and integrating over

velocity space gives, respectively:

Mass-density

∂ρ

∂t
+∇ · [ρU−κ∇ρ] = 0, (6)

Momentum

∂ρU

∂t
+∇ · [ρUU ] +∇ · [pI+Π]−∇ · [κ∇ (ρU)] = 0, (7)

Energy

∂

∂t

[
1

2
ρU2 + ρein

]
+∇ ·

[
1

2
ρU2U + ρeinU

]
+∇ · [(pI+Π) · U ] +∇ · [q]

−∇ ·
[
κ∇

(
1

2
ρU2 + ρein

)]
= 0, (8)

where I is the identity matrix, Π = P−pI with p the kinetic pressure related to the internal

energy by 3p = 2ρein. Compared with the conventional fluid dynamic set of conservation

equations, new terms in the above set are underlined (and this formatting will be continued

below). These terms all have clear meaning from the derivation: the underlined term in

the mass-density equation is a mass or volume diffusion component resulting from the ran-

dom spatial distribution of molecules. The underlined terms in the momentum and energy
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equations are, respectively, momentum and energy diffusion resulting from the same random

changes in positions at the microscopic level (not the random exchange of momentum).

The shear stress and heat flux that result from molecular-level random exchange of mo-

mentum and energy can be given their Navier-Stokes and Fourier Law expressions:

Π = −µ
[
∇U + (∇U)tr

]
+ η∇ · UI, and q = −κh∇T, (9)

with µ, η and κh being, respectively, the dynamic and volume viscosities and the heat

conductivity. Temperature T is associated, according to the kinetic theory definition, with

ein = (3/2)RT , with R being the specific gas constant.

C. The thermodynamic and mechanical inconsistencies

Assuming a material derivative by D/Dt = ∂/∂t+ U · ∇, equation (7) can be rewritten,

ρ
DU

Dt
+

(
∂ρ

∂t
+∇ · [ρU ]

)
U +∇ · [pI+Π]−∇ · [κ∇ (ρU)] = 0, (10)

which becomes, after introducing the mass-density equation (6),

ρ
DU

Dt
+∇ · [pI+Π] + (∇ · [κ∇ρ])U −∇ · [κ∇ (ρU)] = 0. (11)

Taking the cross product of equation (11) with a hydrodynamic position vector X, we notice

that the underlined terms generate,

X ∧ {(∇ · [κ∇ρ])U −∇ · [κ∇ (ρU)]} , (12)

which we cannot write in local conservative form, i.e. as ∇ · [...]. So these terms appear as

local angular momentum production terms. Equation (11) is therefore said to violate local

angular momentum conservation [11].

To analyze the second law of thermodynamics, energy equation (8) is first re-written:

ρ
D

Dt

[
1

2
U2 + ein

]
+

(
∂ρ

∂t
+∇ · [ρU ]

)(
1

2
U2 + ein

)
+∇ · [(pI+Π) · U ] +∇ · [q]

−∇ ·
[
κ∇

(
1

2
ρU2 + ρein

)]
= 0, (13)
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which becomes, after introducing the mass conservation equation (6),

ρ
D

Dt

[
1

2
U2 + ein

]
+∇ · [κ∇ρ]

(
1

2
U2 + ein

)
+∇ · [(pI+Π) · U ] +∇ · [q]

−∇ ·
[
κ∇

(
1

2
ρU2 + ρein

)]
= 0. (14)

Momentum equation (11) can be used to eliminate the macroscopic kinetic energy terms;

introducing the density equation (6), the energy equation is finally

ρ
Dein
Dt

+ pρ
Dρ−1

Dt
−2κ∇ρ · ∇ein − κρ∇ · ∇ein +

p

ρ
∇ · [κ∇ρ]

−κρ∇U : ∇U +Π : ∇U +∇ · [q] = 0, (15)

in which ‘:’ denotes the Frobenius inner product. In classical fluid dynamics, the specific

entropy s is defined by adopting the Gibbs (local equilibrium) equation:

ρT
Ds

Dt
= ρ

Dein
Dt

+ pρ
Dρ−1

Dt
. (16)

Using equation (16), energy equation (15) becomes an equation for the entropy:

ρ
Ds

Dt
− κcv

T
∇ · ∇(ρT ) + κ (R + cv)∇ · ∇ρ

−κρ
1

T
∇U : ∇U +

1

T
Π : ∇U +

1

T
∇ · [q] = 0, (17)

where we have used ein = cvT . Finally, with the identity,

1

ϕ
∇ · ∇ϕ =

∇ϕ · ∇ϕ

ϕ2
+∇ ·

(
∇ϕ

ϕ

)
, (18)

where ϕ is a scalar field, the entropy equation (17) takes the form:

ρ
Ds

Dt
−ρκcv∇ ·

(
∇(ρT )

ρT

)
+ ρκ (R + cv)∇ ·

(
∇ρ

ρ

)
− κh∇ ·

(
∇T

T

)
=

κρ

T
∇U : ∇U − 1

T
Π : ∇U +

κh + ρκcv
T 2

∇T · ∇T+

{
2κTcv
T 2

∇ρ · ∇T − ρκR

ρ2
∇ρ · ∇ρ

}
. (19)

The terms in curly brackets in equation (19) can be either negative or positive. This sug-

gests that a negative temperature or decreasing entropy could occur. According to classical

thermodynamics with the Gibbs equation (16), these terms are therefore undesirable. These
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difficult terms in both the momentum and entropy equations are generated by the diffusive

term in the density equation (or, more precisely, the spatial diffusive term in the initial

kinetic equation).

Despite the problems observed with equations (12) and (19), kinetic equation (1) and

others of that type do admit an H-theorem [3, 4]. In the following sections we demonstrate,

using a scaling analysis, that the problematic terms do not actually belong to the standard

vanishing Knudsen number regime.

III. A SPATIAL AND TEMPORAL SCALING PROBLEM

A. Three scaling parameters

In continuum fluid mechanics, three different spatial scaling parameters can be identified,

and are represented in Figure 1.

 

lloc 
l L 

FIG. 1: Schematic of the three classical scaling parameters in gases

The three scaling parameters are [19]:

• the molecular mean free path λ;

• the length scale of the local element of fluid volume lloc;

• the macroscopic flow length scale L.

Classical continuum theory assumes the following systematic ordering:

λ << lloc << L. (20)

8



However, in order to resolve typical non-local-equilibrium effects, for example, in rarefied

gases confined in a micro device, requires a different ordering,

lloc < λ << L, (21)

or

lloc << L < λ. (22)

Ordering (20) means sufficient collisions take place to assure a local thermodynamic equi-

librium in the volume element l3loc. In the order (21), molecular collisions are rare and

insufficient to assure a local equilibrium. So, we may define a local Knudsen number Knloc
,

and the conventional Knudsen number Kn, as follows

Knloc
=

λ

lloc
and Kn =

λ

L
, (23)

which characterize different types of relaxation processes: while Kn is used to classify the

degree of non-equilibrium related to collisions, Knloc
is related to relaxation processes not

necessarily controlled by collisions. Order (22) can simply be viewed as the free molecular

flight regime, in which continuum fluid modeling becomes completely inappropriate. So

taking a continuum limit, in the classical sense, as the regime where lloc << L, we observe

that there are still two sub-continuum domains to be distinguished: λ < lloc and lloc < λ. We

contend that the controversies surrounding volume-mass diffusion, for example, arise in the

latter case where there may be relaxation processes not related to inter-molecular collisions.

B. Resolving the spatial and temporal scaling problem

First, we note that kinetic equation (1) is written for molecular motions and distributions.

Second, it is admitted that, in writing the Boltzmann kinetic equation, the drift term ξ ·∇f

describes a deterministic molecular motion. From this viewpoint, the position variable

involved in kinetic equations such as equation (1), with its associated gradient operator ∇,

refers to a molecular spatial position. However, the position variable involved in macroscopic

field variables (for example, the macroscopic density ρ(t,X)) corresponds to a different scale.
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This view of a scale difference between the molecular and the macroscopic/hydrodynamic

interpretations of the position variable is shared by a number of researchers [3, 11, 15, 20–22].

Here we start to account for this difference by re-denoting the molecular position variable as

x, and the macroscopic continuum position variable as X. The associated gradient operator

for the microscopic level will be denoted ∇x, while ∇ will denote the gradient using the

macroscopic spatial variable. Scaling molecular to macroscopic position variables requires

us to recognize that the characteristic length-scale associated with the molecular position

variable x should be lloc (and not L). We therefore set X = ϵx with ϵ = Knloc
.

The two different gradient operators follow accordingly:

∇x = ϵ∇ and ∇x · ∇x = ϵ2∇ · ∇. (24)

Time variables and associated derivatives should also be distinguished at the different scales:

t = ετ and
∂

∂τ
= ε

∂

∂t
, (25)

with τ the microscopic and t the macroscopic time scales; ε may also be viewed as a Knudsen

number as it is the ratio of molecular to macroscopic relaxation times. In flows with speeds

typically of the same order of magnitude as the molecular speed we can adopt ε = ϵ. Sound

wave propagation is such an example (and volume-mass diffusion models have been shown

to give surprisingly good predictions for this [8]). More generally, equations (24) and (25)

can be interpreted as accounting for the observation that changes at the molecular spatial

length scale do not occur at the same rate as changes at the macroscopic continuum spatial

scale.

C. Re-interpretation of the dissipative volume-mass kinetic equation

Now that we are distinguishing between molecular and macroscopic time and space vari-

ables, the distribution function at the molecular level is written f ≡ f(τ, x, ξ). So the new

kinetic equation, from rewriting equation (1), is:

∂f

∂τ
+ ξ · ∇xf −∇x · κ∇xf − Iξ(f, f) = 0, (26)
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from which, after substituting the changes in time and spatial variables from equations (24)

and (25), we obtain

ε
∂f̄

∂t
+ ϵξ · ∇f̄ − ϵ2∇ · κ∇f̄ − Iξ(f̄ , f̄) = 0, (27)

where f̄ ≡ f̄(t,X, ξ) denotes the molecular distribution function when written in terms

of macroscopic (t,X). The collision operator Iξ(f̄ , f̄), regarded as a velocity or momentum

space operator, is not affected by the change of variables. Equation (27) with ϵ = ε simplifies

into,

∂f̄

∂t
+ ξ · ∇f̄ − ϵ∇ · κ∇f̄ − 1

ϵ
Iξ(f̄ , f̄) = 0. (28)

This kinetic equation (28) displays some important features that deserve particular at-

tention: for small local Knudsen number, the collision integral dominates the microscopic

spatial diffusion term (which itself becomes negligible). Specifically, for small local Knudsen

numbers this equation is the Boltzmann deterministic equation without a spatial stochastic

component [10]. The second important feature is that the spatial diffusion term and the

collision integral term vary in opposite ways to each other with regards to changes in local

Knudsen number.

D. Re-interpretation of macroscopic flow properties and the continuum set of

equations

The macroscopic flow properties, mass-density ρ(t,X), flow velocity U(t,X) and others,

are defined in equations (2) to (5), except that now the distribution function is replaced by

f̄(t,X, ξ). Multiplying the stochastic kinetic equation (28) by M,Mξ,Mξ2/2, and integrat-

ing over velocity space yields the following set of equations:

Mass-density

∂ρ

∂t
+∇ · [ρU ]−ϵ∇ · [κ∇ρ] = 0, (29)

Momentum

∂ρU

∂t
+∇ · [ρUU ] +∇ · [pI+Π]−ϵ∇ · [κ∇ (ρU)] = 0, (30)
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Energy

∂

∂t

[
1

2
ρU2 + ρein

]
+∇ ·

[
1

2
ρU2U + ρeinU

]
+∇ · [(pI+Π) · U ] +∇ · [q]

−ϵ∇ ·
[
κ∇

(
1

2
ρU2 + ρein

)]
= 0. (31)

Note that this set of equations is the Navier-Stokes-Fourier hydrodynamic model when

the local Knudsen number is small, i.e. when ϵ << 1. In that hydrodynamic regime,

terms related to any volume-mass diffusion vanish. Consequently, we can assert that the

set of equations (29)-(31) does not violate the mechanical or thermodynamic consistency

existing at the Navier-Stokes-Fourier order. Specifically, with the temporal and spatial scale

differences between the micro and macro clarified in kinetic equation (28), a new entropy

evolution equation results (viz. equation (19)):

ρ
Ds

Dt
− ρϵκcv∇ ·

(
∇(ρT )

ρT

)
+ ρϵκ (R + cv)∇ ·

(
∇ρ

ρ

)
− κh∇ ·

(
∇T

T

)
=

ϵκρ

T
∇U : ∇U − 1

T
Π : ∇U +

κh + ρϵκcv
T 2

∇T · ∇T +

{
2ϵκTcv
T 2

∇ρ · ∇T − ϵρκR

ρ2
∇ρ · ∇ρ

}
.

(32)

Taking the limit ϵ 7→ 0, while assuming κ to have a finite value, equation (32) yields:

ρ
Ds

Dt
− κh∇ ·

(
∇T

T

)
= − 1

T
Π : ∇U +

κh

T 2
∇T · ∇T, (33)

which is the entropy evolution equation within a conventional Navier-Stokes-Fourier frame-

work without any additional modification. In other words, there is no thermodynamic

contradiction. The same observation obtains for angular momentum conservation, when

considering equation (12) and including the scaling difference.

IV. EXISTENCE OF A CONSISTENT VOLUME-MASS DIFFUSION MODEL AT

ORDER Knloc

From the previous section, a question that arises is whether it is possible to obtain a

hydrodynamic equation that is of first order in Knloc
and first order in Kn without violating

mechanical properties.
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In the original Klimontovich kinetic equation (1), molecular spatial stochasticity has been

incorporated exclusively as a spatial diffusion term only. Another way of implementing this

physical aspect in the modelling consists of introducing the local volume as an independent

microscopic random variable. This rather more complete version of kinetic equation (1) was

presented in [23] and a transport equation developed for the local volume. The associated

set of macroscopic equations, after neglecting non-linear diffusive fluxes, may be written as

follows [24]; denoting the material derivative by D/Dt = ∂/∂t+ Um · ∇:

Dρ

Dt
= −ρ∇ · Um, (34a)

ρ
DUm

Dt
= −∇ ·Π, (34b)

ρ
D

Dt

[
1

2
U2
m + ein

]
= −∇ · [Π · Uv]−∇ · Ju, (34c)

closed with

Π = pI+Πv, Πv = −2µ
˚∇Uv, (35a)

Ju = −κh∇T, (35b)

Uv = Um + Jv, Jv =
κm

ρ
∇ρ, (35c)

where

˚∇Uv =
1

2

(
∇Uv +∇Uv

)
− 1

3
∇ · UvI. (36)

A single bar over the velocity gradient here denotes the transpose operator, and I is the

second order identity tensor. In the above set of equations, the volume-mass diffusive flux

is Jv in equation (35c). It appears primarily through the expression of the shear stress,

equation (35a), and is associated with another form of velocity, Uv, termed the volume

velocity [23]. Velocity Um, used in the material derivative, is the traditional mass current

velocity, giving the mass flux and satisfying the continuity equation (34a). The additional

transport coefficient κm is the volume-mass diffusivity coefficient.
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Taking the cross product of equation (34b) with hydrodynamic position vector X:

X ∧ ρ
DUm

Dt
= −X ∧∇ · [pI+Πv] , (37)

which is equivalent to

ρ
D

Dt
[X ∧ Um] = −X ∧∇ · [pI+Πv] . (38)

For any symmetrical second order tensor ¯̄T, the following property holds:

X ∧
[
∇ · ¯̄T

]
= ∇ ·

[
X ∧ ¯̄T

]
, (39)

and the pressure tensor Πv given in equation (35a) is symmetrical. So equation (38) has

the following final form:

ρ
D

Dt
[X ∧ Um] = −∇ · [X ∧ [pI+Πv]] . (40)

Therefore conservation of angular momentum is satisfied. More generally, it is also straight-

forward to verify that the hydrodynamic set of equations (34a)-(35c) satisfies mechani-

cal properties such as: Galilean invariance, integrability, angular momentum conservation,

center-of-mass position (see [24]). The principal reason for this is that the mass flux ve-

locity vector Um in equation (34a) is the same as that in the momentum density on the

left-hand side of equation (34b). In contrast, note that velocity vector U within the set of

equations (6)-(8), is comparable with Uv in equation (35c), and not the mass current veloc-

ity Um. This distinction is crucial to interpret angular momentum conservation and other

mechanical properties appropriately. In [24] the second law of thermodynamics is also shown

through an extended thermodynamics approach (however see also references [25–27]). The

momentum equation (34b), closed with (35a), is the same as that derived by Koide and Ko-

dama using an explicit stochastic approach [28]. In the Appendix we give another example

showing the important role played by the spatial scaling.

V. DISCUSSION

The distinction we have made between Knloc
and Kn separates local relaxation processes

not related to momentum diffusion from relaxation processes related to momentum diffusion.
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Momentum diffusion and heat diffusion are both associated with collisions: the shear stress

and heat flux of the Navier-Stokes-Fourier model are first order in the traditional Knudsen

number Kn. In our case, volume-mass diffusion appears as another form of transport process

driven by spatial stochastic behaviors rather than intermolecular collisions, so is a non-

equilibrium effect we quantify using Knloc
at a fixed Kn.

The slip and transition flow regimes correspond primarily to relatively large mean-free-

path regimes where the flow is still under the classical assumption of lloc << L. Diffusive

volume-mass models are reported as producing better agreement with experiments for these

types of flow problems [6–9, 18]. Our description and the new classification in section

III appear to shed some light on this issue. volume-mass diffusion appears simply as a

component of the flow physics, originating from a different order of the microstructure

behaviour. It appears in addition to and alongside traditional heat and momentum diffusion

processes.

Equation (28) has a strong similarity, not only in its form but also in its derivation, to

the (extended) Boltzmann kinetic equation that leads to the ‘ghost effect’ (i.e. where high

Knudsen number terms are found to influence flows in the hydrodynamic or pure contin-

uum regime [20]). The (apparent) inconsistency observed when using hydrodynamic models

associated with the Klimontovich kinetic equation (1) may be understood because, that

description did not identify the distinction between the ‘mass velocity’ and the ‘volume or

diffusion velocity’, which are related respectively to ‘mass averaging’ and ‘volume averaging’

[29].

It is widely known that, when conducting a Chapman-Enskog type of expansion in Kn on

the Boltzmann kinetic equation without any spatial diffusion modification, the second order

hydrodynamic model beyond that of Navier-Stokes-Fourier, namely the Burnett equations,

violates many conventional mechanical and thermodynamical properties [14–17]. We note

that the volume-mass diffusion contributions in our hydrodynamic set of equations (for

example, in the momentum equation 34b) are also of Burnett order. These contributions

are identical to corrective terms to the Navier-Stokes equations that produce the ‘ghost effect’
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[30]. A hydrodynamic set of equations (such as the set 34a-35c), which maintains mechanical

and thermodynamic consistency while containing Burnett order terms, is a significant result

from the kinetic theory point of view.

VI. CONCLUSION

We have shown that diffusive volume (or mass) as a component of models for non-

continuum flows does not conflict thermodynamically or mechanically with the Navier-

Stokes-Fourier model, provided both micro and macro time and space scales are distin-

guished in the governing equations. There appears to be a sub-domain in the continuum

range for which the conventional Knudsen number classification does not properly account

for. Classical diffusive transport, i.e. shear stress and heat flux, are vanishing local Knud-

sen number effects, while volume or mass diffusion appears at different but parallel order.

Volume-mass diffusion is simply another level of microstructure contributions beyond that

of the Navier-Stokes-Fourier diffusion processes. Its emergence at finite Knudsen number at

least partly explains the perplexingly good agreement of these new models with experiments

on non-continuum flows.
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THE SPATIAL SCALING PROBLEM FROM THE VIEWPOINT OF A KINETIC

MODEL INCORPORATING STOCHASTIC MOLECULAR MOTION

In [31, 32], a kinetic equation is proposed that consists of replacing the Boltzmann collision

integral with a velocity space stochastic operator. The proposed kinetic equation is written:

∂f

∂t
+ Vi

∂f

∂xi

= S(f), (41)

where S(f), the proposed velocity space stochastic operator, reads

S(f) = −∂Aif

∂Vi

+
D2

2

∂2f

∂Vj∂Vj

, (42)

with f ≡ f(t, x, V ), the molecular distribution probability density function. Coefficient D

and vector A are given the expressions [32]:

Ai = −1

τ
(Vi − Ui) and

D2

2
=

2ein
3τ

, (43)

with U a gas macroscopic velocity, τ a relaxation time and V is molecular velocity. The

distribution function f in equation (41) is primarily a function of the macroscopic time and

spatial position variables, denoted t and x respectively (see page 4 of [32]).
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The authors then assumed that kinetic model (41) is equivalent to the following coupled

stochastic molecular motion equations:
δXi

δt
= Mi,

δMi

δt
= − 1

τ
(Mi − Ui) +

(
4ein
3τ

)1/2 δWi(t)
δt

,
(44)

where Xi refers to molecule positions and Mi to molecule velocities; Wi(t) is a Wiener

process representing the stochastic force component.

In the coupled equations (44), we first note that the position variable Xi and velocity

variable Mi are no longer independent, but rather coupled. Second, the position variable

(and also the time variable) in equation (44) is not the same as the position (or time) variable

in equation (41). This crucial point was recognized by the authors, as they denoted one of

these variables x and the other X (see page 8 of [32]). Finally, in stochastic equations such

as equation (44) derivative operators are no longer differentiation in the ordinary sense,

but should be treated in the Ito sense. That is to say, we need a definition of a measure

and the use of the Ito integration formula. This explicit integration has been performed

by Bogomolov and Dorodnitsyn [10], who derived the macroscopic set of equations from

equation (44). Taking into account the fact that position is given by the time integral of

the velocity, and the Ito transformation, they gave for the macroscopic fluid density the

following equation [10]:

∂ρ

∂t
+∇ · [ρU − 1

2
Knloc

D2

A2
∇ρ] = 0, (45)

which is a dissipative volume-mass type of equation for the density. Note that the diffusive

term in equation (6) is derived directly from the second term in the Ito formula. Physically,

it is just the translation of the stochasticity implemented on the velocity in equation (44)

onto particle positions. Parameter Knloc is the signature of the transition from variable

X to variable x: it is a local Knudsen number in the same way as in our equation (23).

Associating a transition measure between the variables x and X was the same source that

led previously to the Klimontovich kinetic equation.

Gorji et al. [32] reported very good agreement of their stochastic kinetic equation (44)

with experiments for a slip/transition regime flow as did Bogomolov and Dorodnitsyn [10].
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