25 research outputs found

    High accuracy monitoring of honey bee colony development by a quantitative method

    Get PDF
    Honey bees are key insect pollinators, providing important economic and ecological value for human beings and ecosystems. This has triggered the development of several monitoring methods for assessing the temporal development of colony size, food storage, brood and pathogens. Nonetheless, most of these methods are based on visual assessments that are observer-dependent and prone to bias. Furthermore, the impact on colony development (invasiveness), as well as accuracy, were rarely considered when implementing new methods. In this study, we present and test a novel accurate and observer-independent method for honey bee colony assessment, capable of being fully standardized. Honey bee colony size is quantified by assessing the weight of adult bees, while brood and provision are assessed by taking photos and conducting image analysis of the combs with the image analysis software DeepbeeVR . The invasiveness and accuracy of the method were investigated using field data from two experimental apiaries in Portugal, comparing results from test and control colonies. At the end of each field experiment, most of the tested colonies had the same colony size, brood levels and honey production as the control colonies. Nonetheless, continuous weight data indicated some disturbance in tested colonies in the first year of monitoring. The overall accuracy of the image analysis software was improved by training, indicating that it is possible to adapt the software to local conditions. We conclude that the use of this fully quantitative method offers a more accurate alternative to classic visual colony assessments, with negligible impact on colony development.This work was supported by European Food Safety Authority under grant OC/EFSA/SCER/2017/02; FCT provided financial support by national funds (FCT/MCTES) to CFE (UIDB/04004/2020) and CIMO (UIDB/00690/2020); NC was financed by FCT under PhD grant SFRH/BD/133352/2017; YLD by DCE (Danish Centre for Environment and Energy) under grant 21628-82105.info:eu-repo/semantics/publishedVersio

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch

    No full text
    Butyrate and other SCFA produced by bacterial fermentation of resistant starch (RS) or nonstarch polysaccharides (NSP) promote human colonic health. To examine variation in fecal variables, especially butyrate, among individuals and the response to these fibers, a randomized cross-over study was conducted that compared the effects of foods supplying 25 g of NSP or 25 g of NSP plus 22 g of RS/d over 4 wk in 46 healthy adults (16 males, 30 females; age 31–66 y). Fecal SCFA levels varied widely among participants at entry (butyrate concentrations: 3.5–32.6 mmol/kg; butyrate excretions: 0.3–18.2 mmol/48 h). BMI explained 27% of inter-individual butyrate variation, whereas protein, starch, carbohydrate, fiber, and fat intake explained up to 16, 6, 2, 4, and 2% of butyrate variation, respectively. Overall, acetate, butyrate, and total SCFA concentrations were higher when participants consumed RS compared with entry and NSP diets, but individual responses varied. Individual and total fecal SCFA excretion, weight, and moisture were higher than those for habitual diets when either fiber diet was consumed. SCFA concentrations (except butyrate) and excretions were higher for males than for females. Butyrate levels increased in response to RS in most individuals but often decreased when entry levels were high. Fecal butyrate and ammonia excretions were positively associated (2 = 0.76; P < 0.001). In conclusion, fecal butyrate levels vary widely among individuals but consuming a diet high in RS usually increases levels and may help maintain colorectal health.Alexandra L. McOrist, Rosalind B. Miller, Anthony R. Bird, Jennifer B. Keogh, Manny Noakes, David L. Topping, and Michael A. Conlo

    Strain-stabilized (Ï€,Ï€) order at the surface of Fe1+xTe

    Get PDF
    C.M.Y., S.N.P., A.W.R., and P.W. acknowledge support from EPSRC through EP/S005005/1, and C.To. and A.W.R. through EP/P024564/1. C.M.Y. acknowledges additional support from a Shanghai talent program and funding through the Shanghai Pujiang Program (20PJ1408200). C.H. acknowledges support from the Austrian Science Fund (FWF), project no. P 32144-N36, and the VSC4 of the Vienna University of Technology.A key property of many quantum materials is that their ground state depends sensitively on small changes of an external tuning parameter, e.g., doping, magnetic field, or pressure, creating opportunities for potential technological applications. Here, we explore tuning of the ground state of the nonsuperconducting parent compound, Fe1+xTe, of the iron chalcogenides by uniaxial strain. Iron telluride exhibits a peculiar (π, 0) antiferromagnetic order unlike the (π, π) order observed in the Fe-pnictide superconductors. The (π, 0) order is accompanied by a significant monoclinic distortion. We explore tuning of the ground state by uniaxial strain combined with low-temperature scanning tunneling microscopy. We demonstrate that, indeed under strain, the surface of Fe1.1Te undergoes a transition to a (π, π)-charge-ordered state. Comparison with transport experiments on uniaxially strained samples shows that this is a surface phase, demonstrating the opportunities afforded by 2D correlated phases stabilized near surfaces and interfaces.Publisher PDFPeer reviewe

    Polyphenol-rich propolis extracts from China and Brazil exert anti-inflammatory effects by modulating ubiquitination of TRAF6 during the activation of NF-κB

    No full text
    Propolis has documented anti-inflammatory properties, although its mechanisms of action are poorly understood. In this study, the anti-inflammatory effects of polyphenol-rich propolis extracts (PPE) from China (CPPE) and Brazil (BPPE) were examined. Oral administration of PPE to lipopolysaccharide (LPS)-challenged mice decreased serum proinflammatory cytokine concentrations and inhibited pulmonary nuclear factor (NF)-κB activation. Both PPE types modulated LPS-induced key inflammatory mediators production in RAW 264.7 macrophages. They also suppressed NF-κB activation in HEK 293T cells, correlating well with their inhibitory effects on IκB phosphorylation and p65 nuclear translocation in LPS-activated macrophages. We found PPE suppressed NF-κB activation through delaying the ubiquitination of TRAF6 in HeLa-T6RZC stable cells and by directly disrupting the polyubiquitin synthesis in an in vitro kinase assay system. Overall, analysis showed substantial compositional differences between CPPE and BPPE; nevertheless, they both displayed similar anti-inflammatory properties through NF-κB-responsive inflammatory gene expressions by inhibiting TRAF6 dependent canonical NF-κB pathway19Part A464478The research was supported by grants from the National Natural Science Foundation of China (No. 31272512) and the earmarked fund for Modern Agro-industry Technology Research System from the Ministry of Agriculture of the People's Republic of China (CARS-45). The authors gratefully acknowledge Mrs. Jinhui Li from 985-Institute of Agrobiology and Environmental Science (985-IAES), Zhejiang University, for her technical support during the flow cytometry analysi
    corecore