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ABSTRACT
Honey bees are key insect pollinators, providing important economic and ecological value
for human beings and ecosystems. This has triggered the development of several monitor-
ing methods for assessing the temporal development of colony size, food storage, brood
and pathogens. Nonetheless, most of these methods are based on visual assessments that
are observer-dependent and prone to bias. Furthermore, the impact on colony development
(invasiveness), as well as accuracy, were rarely considered when implementing new methods.
In this study, we present and test a novel accurate and observer-independent method for
honey bee colony assessment, capable of being fully standardized. Honey bee colony size is
quantified by assessing the weight of adult bees, while brood and provision are assessed by
taking photos and conducting image analysis of the combs with the image analysis software
DeepbeeVR . The invasiveness and accuracy of the method were investigated using field data
from two experimental apiaries in Portugal, comparing results from test and control colonies.
At the end of each field experiment, most of the tested colonies had the same colony size,
brood levels and honey production as the control colonies. Nonetheless, continuous weight
data indicated some disturbance in tested colonies in the first year of monitoring. The over-
all accuracy of the image analysis software was improved by training, indicating that it is
possible to adapt the software to local conditions. We conclude that the use of this fully
quantitative method offers a more accurate alternative to classic visual colony assessments,
with negligible impact on colony development.
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Introduction

Pollination is vital for the functioning and sustain-
ability of terrestrial ecosystems and is considered
one of the most important regulating ecosystem
services (IPBES, 2016). Pollinators are responsible for
the maintenance of many terrestrial ecosystems,
since the service they provide allows, directly or
indirectly, for other species to co-exist and develop.
It is estimated that 87.5% of all flowering plant spe-
cies are to some extent dependent on animal pollin-
ation (Ollerton et al., 2011). Amongst pollinators, the
Western honey bee (Apis mellifera) has been intro-
duced worldwide and is a key species in crop pollin-
ation (Garibaldi et al., 2013; Klein et al., 2007).
Furthermore, honey bees are complementary pollina-
tors in natural habitats, as they are the most fre-
quent visitor in 13% of plant species and the only

flower-visitor observed in 5% of the plants (Hung
et al., 2018).

The increasing use of honey bees for crop pollin-
ation, derived from the rapid expansion of pollin-
ator-dependent crops (Aizen et al., 2009), has led to
an increase in the number of colonies worldwide
(FAO, 2020). Even the decreasing trend in the num-
ber of colonies due to sudden colony losses and
winter losses in Europe and North America from the
1990s onwards, has been inverted since 2008 (FAO,
2020; Osterman et al., 2021). Nonetheless, these fig-
ures only cover the total number of colonies, with-
out considering their health status or strength, and
high winter losses (>15%) have been reported since
the occurrence of the ectoparasitic mite Varroa
destructor outside of its native range (Potts et al.,
2010; 2016). In addition to Varroa, multiple drivers of
honey bee colony losses have been identified,
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including historical land use changes leading to scar-
city of flower resources, use of pesticides, detrimen-
tal beekeeping practices, and increased pressure
from other pests and parasites (Steinhauer et al.,
2018; Vanengelsdorp et al., 2009). Due to the diver-
sity and interaction of stressors, the main challenge
is to understand their impacts, in isolation and in
combination, in addition to confounding factors
such as landscape context and climate (More
et al., 2021).

The economic and ecological value of honey bees
and the urgent need to understand colony losses
have motivated the implementation of research
methods to assess the temporal development of col-
ony strength and health (Delaplane et al., 2013;
Human et al., 2013; EFSA AHAW Panel (EFSA Panel
on Animal Health & Welfare), 2016). These methods
provided researchers with numerous useful tools for
colony assessment. However, universal methods and
protocols for the field assessment of honey bee colo-
nies have not been established yet, due to local vari-
ation and constraints imposed by climate, honey bee
genetic diversity (subspecies and ecotypes), bee-
keeping practices and landscape. Therefore, the
results obtained using different methods are not
necessarily directly comparable. As one example,
honey production may be estimated by calculating
the number of honey cells in a comb or by weight-
ing the honey frames, however, no simple conver-
sion exists between these two measures.

Most protocols for colony strength assessment are
based on the Liebefeld method or adaptations from
it (Delaplane et al., 2013). The Liebefeld method con-
sists of a visual estimate of the number of adult
bees on each side of the frame, in addition to a vis-
ual estimate of the comb surface area (dm2) contain-
ing open brood, capped brood and provision (Dainat
et al., 2020). The method has been enhanced by
training observers using images of combs with
known cell content (e.g., Dainat et al., 2020;
Hernandez et al., 2020), or by the use of a grid or a
measuring tape to estimate the brood ellipse (e.g.,
Odoux et al., 2014). These adaptations improve the
accuracy of the visual estimates, although estimates
are still observer-dependent.

The need for quantitative data, which are both
accurate and observer-independent, has been
increasing in recent years. As a quantitative measure
of the honey bee adult population, the weight of
the frames with and without bees has been used as
an alternative to visual assessments (e.g., Meikle &
Weiss, 2017; Odoux et al., 2014). Semi-automatic or
automatic analysis of comb images has also been
evaluated as an alternative to visual assessment of
comb cell content. However, a range of challenges
has hindered the use of image analysis methods.

Some software/algorithms only reliably identified
capped brood cells (Rodrigues et al., 2016;
Yoshiyama et al., 2011), while others could detect
different cell content but with a low accuracy level
(Liew et al., 2010), or extensive time was needed for
the analysis (Meikle & Weiss, 2017). A recent devel-
opment, DeepBee# (Alves et al., 2020), is an open-
source software capable of distinguishing different
comb cell contents (eggs, larvae, capped brood, bee
bread, nectar, honey and others) with high accuracy
(94.3% overall accuracy according to Alves
et al., 2020).

Despite these technological advancements, which
enable quantitative assessments of honey bee col-
ony strength and provision, no standard protocols
are available which provide reliable and accurate col-
ony analysis. Such an analysis should include a
detailed assessment of the most important indicators
of colony development and health, based on accur-
ate, observer-independent data. Furthermore, most
of the existing protocols have, in general, not been
assessed for their invasiveness, i.e., their potential
impact on colony development. If the monitoring
method adversely affects colony development, the
resulting data will not reflect normal colony growth.
Hence, a standard protocol should be based on high
quality quantitative data, using monitoring methods,
which do not impact colony development.

The Animal Health and Welfare (AHAW) Panel of
the European Food Safety Authority (EFSA) published
a scientific opinion that mapped existing colony indi-
cators and assessment methods, known as the
“HEALTHY-B” toolbox (EFSA AHAW Panel (EFSA Panel
on Animal Health & Welfare), 2016). Based on the
most important colony health status indicators from
this document, relevant methods were selected and
used in a large-scale field study, in order to develop
a field protocol, which involved collecting accurate
quantitative empirical data on colony size (adult
bees), brood development, provision, and health
(diseases and parasites loads) (Dupont et al., 2021;
Supplemental material A).

In the current study, we tested a new quantitative
method, as an alternative to the widely used
Liebefeld method. In two apiaries located in
Portugal, we assessed colony strength and develop-
ment using weight and image analysis of cell combs
to quantify colony size, brood and provision and
their dynamics across two field seasons. To evaluate
the image analysis usefulness and adaptation to
local conditions, we tested the accuracy of the cell
detection made by the software DeepBee#.
Furthermore, we tested whether disturbance induced
by frequent and invasive monitoring had a measur-
able impact on colony development by comparing
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monitored (test) colonies and non-monitored (con-
trol) colonies.

Materials and methods

Experimental set-up

Experimental apiaries were installed in two distinct
landscapes: Serra da Lous~a (40�02053.600N 8�140.900W)
and Idanha-a-Nova (39�51033.000N 7�090.700W),
Portugal. The landscape in Lous~a was dominated by
forested areas and scrubs, with a high diversity of
nectar and pollen resources available from March to
October, with a peak in May. In Idanha, the land-
scape was dominated by pastures, cork-oak forest
and cereal crops for fodder, containing floral resour-
ces from March to July, with a peak in April/May
(Dupont et al., 2021).

Each apiary included seven colonies of local
honey bee populations, i.e., Apis mellifera iberiensis in
Langstroth hives. The colonies were established in
the autumn of 2018 using Varroa-treated package
bees (provided by a local professional Beekeeper). To
minimize variability among colonies due to genetics,
colonies originating from sister queens produced in
2018, were used in both apiaries. All colonies were
managed using local standard beekeeping practices.
Colonies were treated against Varroa mites with
Apivar (amitraz) in January 2019, with Apiguard (thy-
mol) in August 2019 and again with Apivar in
February and August 2020 and visually screened for
disease symptoms at every visit.

In each apiary, five colonies (hereafter denoted
test colonies) were subjected to regular colony
assessments (see Supplemental material A for
details), throughout two field seasons, between
March and September of 2019 and 2020 guarantee-
ing low levels of Varroa mites. Test colonies were
assessed approximately every ±19 days, to guarantee
a snapshot of all the brood cycles within the worker
bee brood development cycle of 21 days. Two colo-
nies (hereafter denoted control colonies) were only
subjected to colony assessments at the beginning
and the end of the field season, in both years and to
regular beekeeping practices during the season. In
2020, monitoring started later due to COVID-19
restrictions and cold weather in Lous~a.

Continuous monitoring of hive weight

All hives were equipped with a Beeyard stand-alone
hive scale for continuous logging of the hive weight.
Hive weight was monitored continuously throughout
two field seasons, from 05 April 2019 to 31
December 2020 in Lous~a and from 30 March 2019 to
31 December 2020 in Idanha. Data on hive weight
was logged continuously and automatically once per

hour. However, to reduce diurnal fluctuations in
weight due to foraging, the hive weight at midnight
was used as the daily measure of total hive weight.
For both years, cumulative weight (increase/
decrease) from the beginning of each field season
until honey harvesting was used to compare the
development of test vs. control colonies, by calculat-
ing the weight difference between the cumulative
mean weight of control colonies and the cumulative
mean weight of test colonies.

Colony assessment

During colony assessment, smoke was applied to
keep the bees on the frame. Afterwards, each comb
frame was hanged on a fixed hanging scale, to
ensure the scale stability and weighed with adult
bees, and set aside in a separate box. In a second
step, bees were gently removed from the comb by
brushing them off into the original hive, and the
empty comb was weighed again. Brood and food
resources were assessed through image analysis of
photos taken from both sides of each comb frame.
To provide homogenous light conditions, images
were obtained using a digital camera (DSRL Nikon
D3300, 24.2MP) installed inside a photography tun-
nel (for further details see Alves et al., 2020). This
procedure was repeated for all the frames in the col-
ony, before returning them to the original hive. To
avoid heat loss during monitoring conducted early
in the season, colony assessments were carried out
when weather conditions were favourable, i.e.
>14 �C, with week wind and dry weather.
Monitoring was carried out as quickly as possible, to
minimize disturbance of the colony. Furthermore,
care was taken to cage the queen during monitor-
ing, to avoid physical damage or exposure to cold or
hot external temperatures.

The number of adult bees was calculated based
on the mean weight per bee. The mean bee weight
was estimated by weighing 50 individual bees, ran-
domly collected after applying smoke to the colony
(Supplemental material B).

Recorded images were assessed for comb cell util-
ization using an upgraded version of the DeepBee#
software, adapted to local conditions (see next sec-
tion – DeepBee# analysis training). The software
automatically detected cells in the comb images and
classified them into the following categories: eggs,
larvae, capped brood, pollen, nectar, honey, and
others (Alves et al., 2020). Although the number of
honey and nectar cells was quantified by the
DeepBee# software, the weight of honey or nectar
varied with cell depth. Therefore, we estimated
honey/nectar provision (honey production) for each
comb frame by subtracting the weight of the
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foundation and other components (capped brood,
larva and beebread) from the weight of the frame
comb without bees. The mean weight of empty
frames was calculated by weighing 50 nest, and 50
honey super, Langstroth comb foundation frames.
Beebread mean weight was calculated by individu-
ally weighing 100 beebread cells on a precision
scale, while capped brood and larva mean weight
was calculated based on Z�ołtowska et al. (2011), in
which the body weight of the successive develop-
mental stages (for both larvae and pupae) was deter-
mined (Supplemental material B).

To detect potential disturbance of colony develop-
ment due to handling during the detailed colony assess-
ment, the number of adults, the number of cells
containing brood and the amount of provision (honey/
nectar) were used as proxies of colony performance. The
number of beebread cells was not used for comparison
since honey bees have a preference to consume fresh
pollen and ignore old beebread (Carroll et al., 2017).
During the experiment, care was taken to verify that all
the colonies had enough beebread cells in the colony.

For each study year, the performance of test and
control colonies was compared at the beginning and

Figure 1. Seasonal change in the mean weight difference between the mean weight of test colonies and mean weight of
control colonies, from the beginning of the experiment until honey collection in the Lous~a apiary in 2020, Lous~a apiary in
2019, and Idanha apiary in 2019. The honey collection in Idanha is earlier than in Lous~a.
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end of the field season. For Lous~a and Idanha in
2019, due to the loss by swarming of one control
colony, a one-sample t-test was carried out to com-
pare the colony size, brood cells, and honey produc-
tion of test colonies. For Lous~a 2020, an
independent samples t-test was performed to com-
pare the test with control colonies.

Image analysis training

The original version of the DeepBee# software has
a high level of accuracy (F1 score of 94%) compared
to visual assessments, although error rates varied
among the different classes, with the least accurate
classes being “eggs” (84% correctly identified cells),
followed by larvae (88%) (Alves et al., 2020). Since
the software is based on deep learning, it is possible
to increase its performance and adapt it to local con-
ditions such as variations in colours, the structure of
pollen and wax, or luminosity during image capture.
To improve the performance of the software, in par-
ticular for the detection of eggs and larvae, we
selected 25 images containing these cell classes
from our colonies. In this training set of images, the
automatic classification of each cell was carefully
examined and manually revised and corrected

whenever needed. After the training, the accuracy of
the upgraded version was assessed using 40 random
images from our colonies by comparing the auto-
matic output with the manually corrected output.
First, the error for each class was calculated as:

error ¼
�
manual correction� software outputð Þ=

manual correction
�
� 100

Secondly, the overall accuracy of each class was
calculated as:

accuracy ¼ 100 � abs errorð Þ

Results

Colonies that swarmed or became queenless during
the experiment were removed from the analysis. This
resulted in data being available for analysis from
three test colonies and one control colony in Lous~a
and Idanha in 2019, four test colonies and two con-
trol colonies in Lous~a in 2020, and five test colonies
and no control colonies in Idanha in 2020. Therefore,
Idanha 2020 data were discarded from the analysis.

Figure 2. Mean number and SD of adult bees, brood cells (eggsþ larvaeþ pupae) and honey/nectar present in test (grey)
and control (yellow) colonies. (a) Lous~a apiary in 2019 - 3 test vs. 1 control colony; (b) Idanha apiary in 2019 – 3 test vs. 1
control colony; (c) Lous~a apiary in 2020 – 4 test vs 2 control colonies. (�) represents significant statistical differences.
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Hive scale data

Seasonal change in hive weight (Figure 1) was calcu-
lated using the automatic hive scale data. These
data reflect diurnal changes in weight due to nectar
flow and pollen collection, consumption of provision,
and changes in adult and brood populations. A
decrease in the weight of the test colonies was
observed in Lous~a 2019 and Idanha 2019 compared
to the control colonies by the end of the season.
The difference in weight between control and test
colonies in the end of the season in Lous~a 2019 was
approximately 6 kg, which represents approximately
9% of the total colony weight. In Idanha 2019, a
similar weight difference (approximately 5 kg) repre-
senting approximately 5.5% of the total colony
weight was found. In Lous~a 2020, the weight pat-
terns of the test colonies were within the range of
the control ones.

Colony assessment

Colony performance parameters (colony size, number
of brood cells, kg of honey/nectar at the beginning
and end of the season) showed no significant differ-
ences (independent samples t-test) in Lous~a in 2020
(Figure 2c). Only the number of initial brood cells in
test colonies was significantly higher than in control

(one sample t-test, p¼ 0.036) in Lous~a in 2019
(Figure 2a). In Idanha in 2019, the initial and final
numbers of adult bees were lower in test colonies
compared to control colonies (one sample t-test,
p< 0.01 in both cases). Similarly, the final honey pro-
duction was lower in test colonies compared to con-
trol ones (one sample t-test, p< 0.01; Figure 2b).

Image analysis software accuracy

Several training sessions of DeepBee# were carried
out to improve the accuracy of the identification of
egg cells and larvae. Comparing the original (Figure
3a with data from Alves et al., 2020) and the
upgraded version after the training session in the
current study (Figure 3b, from our own set of 40 ran-
dom pictures after training), the image classification
resulted in the preservation of a near-perfect capped
brood detection, and in a better performance in
detecting eggs, larvae and honey, albeit a poorer
performance in pollen, and nectar classification
(Figure 3b). With an overall increase in the software
accuracy, the “other” class accuracy, that usually is
associated with empty cells, also increased. The
upgraded version of DeepBee# allowed for a more
accurate assessment of brood development with a

Figure 3. DeepBee# accuracy (a) in Alves et al. (2020) and (b) after training with a set of comb images recorded in the cur-
rent study. Eggs, larvae, other and honey classification was improved while pollen and nectar were reduced. Capped cell clas-
sification remained above 99% accuracy. In the original DeepBee# version, young larvae and eggs are the main source of
inaccuracy. Nevertheless, the upgraded version increased the detection of eggs and larvae above 93%.
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minor impact on provision quantification as honey/
nectar were estimated using weight.

Discussion

In this study, we gathered detailed data on colony
size, brood, and provision, monitored at regular
intervals during the field season from test colonies
and only at the beginning and end of the season in
control colonies. This was combined with continuous
daily colony weight measured by automatic hive
scales. Both sets of data were used to assess if the
disturbance induced by frequent and invasive moni-
toring had a measurable impact on colony develop-
ment. Also, the image method accuracy and
adaptation to local conditions were evaluated by
measuring the image analysis software accuracy.

In general, comparing the performance of test
and control colonies at the beginning and end of
the season only indicates minor impacts due to the
implementation of the protocol every ±19 days in
some scenarios. In Idanha 2019, test and control col-
onies differed in the final colony size and honey pro-
duction. However, this may be related to the initial
status (the control colony had a higher population in
spring 2019) and not with any impaired develop-
ment. Nonetheless, the small number of colonies
and high variability in colony development may
mask subtle effects of monitoring mainly when com-
paring only two data points in time. To overcome
this concern, we used scale data to assess variation
during the season.

We had expected that the higher number of bees
and brood cells at the beginning of the experiment
would result in a larger population of foragers for
collecting resources during peak flowering in spring.
Nevertheless, the 2019 scale data showed a decrease
in the weight of test colonies compared to control
ones in both apiaries, although the decrease in
weight started only after spring. This possibly means
that the initial status did not play a role in the final
production nor in colony size and there is a measur-
able impact caused by the regular colony inspec-
tions. Nonetheless, the negative impacts of
monitoring on test colonies could only be detected
after several assessments. This tendency was not

observed in 2020, as the seasonal patterns of weight
change of the test colonies were within the same
range as the control ones. Furthermore, no differen-
ces were detected between the initial and end-of-
season parameters when comparing the test and
control colonies (Figure 2a). This suggests that the
level of disturbance due to monitoring is not
affected by the methodology per se, but on the han-
dling by the observer. Unexperienced observers
spend more time on each assessment, increasing the
colony stress by preventing the colony from a faster
return to their original state (before the stress), and
by increasing the brood temperature fluctuations,
which, above certain levels, cannot allow the brood
to recover from the stressor (Ramirez et al., 2021).
Also, the gentleness used in frame handling and
brushing the bees can play a role in decreasing
these stressors. Possibly, our experience in colony
assessment acquired during the 2019 field season
resulted in a more swift and effective monitoring
and induced less disturbance to the test colonies in
2020. The registered colony weight loss in 2019 that
was not registered in 2020 could therefore be
explained by the higher amount of energy used to
restore the colony after the suffered stressor (e.g.,
Schott et al., 2021).

We hence conclude that conducting detailed col-
ony assessments every ±19 days during the field sea-
son is likely to induce some stress, although effects
are subtle when comparing colony performance due
to colony feedback mechanisms and to inter-colony
variability. Such feedback mechanisms may allow
stressed colonies to spend more energy and resour-
ces on recovering (e.g., Schott et al., 2021). Reducing
the number of visits/colony assessments can com-
promise the temporal resolution of data points, but
will decrease the induced stress, increasing the data
reliability on the specific days of monitoring.
Likewise, the colonies only seem to be impacted
after a few colony assessments. Therefore, the use of
the method during a short timeframe (i.e., less than
3months) would not compromise the quality of the
data. Finally, we recommend training sessions on
non-experimental colonies before an experiment is
carried out, to improve the observers’ skills in col-
ony handling.

Table 1. Comparison of available methods for honey bee colony assessment, from visual assessments (Liebefeld) to quantita-
tive ones (the proposed method).
Parameter Liebefeld Coleval (Hernandez et al., 2020) ECOBEE (Odoux et al., 2014) Quantitative method

Data accuracy Low Intermediate Intermediate High
Distinguish eggs/larvae/pupae Yes No (open vs. closed brood) No (open vs. closed) Yes
Identification of pollen, nectar and honey Yes Yes No Yes
Colony size assessment Yes Yes Yes Yes
Observer dependent Yes Yes No No
Time spent on assessment Slow Fast Fast Slow
Experience setting Simple Simple Simple Laborious
Observer training Laborious Laborious Simple Simple
Adequate for large experiments Yes Yes Yes No

JOURNAL OF APICULTURAL RESEARCH 7



The proposed protocol allows the user to assess
colony size, brood development and provision using
quantitative assessments that are independent of
the observer. Compared to other existing methods
(Table 1), the proposed protocol requires the con-
struction of a photography tunnel for recording
comb images (see construction details in Alves et al.,
2020), and an investment in the tunnel and a digital
camera. We believe that these constraints are easily
overcome by researchers, but financial and logistic
challenges may limit the implementation by bee-
keepers while doing regular colony assessments.
When compared to the Liebefeld-based methods,
the quantitative method allows the acquisition of
accurate cell count data on all brood stages (from
eggs to pupae), different food reserves (nectar/honey
and pollen) and number of adult bees. The method
can be applied anywhere in the world without any
previous training for comb content extrapolations
(observer-independent), and the comb images can
be stored, and hence re-analysed and/or used in
future training of DeepBee#. However, although
much more accurate data are obtained by image
analysis, the recording of images is more labour
intensive than conducting a Liebefeld assessment.
Disregarding the time required to set-up the photog-
raphy tunnel (10minutes, if the tunnel is installed in
the apiary during the season), monitoring takes two
people approximately 25 (±5) minutes, 32 (±5)
minutes and 49 (±2) minutes for a colony with one,
two boxes or three boxes, respectively. Our team
achieved similar assessment times in another project
in which an enhanced Liebefeld method (using a
grid) was used. However, the time spent on both
assessments is not directly comparable, as we had
more experience in the quantitative method.

In addition to being capable of recognizing and
distinguishing the different cell contents, DeepBee#
is an open-access and user-friendly software.
Moreover, it can be upgraded and adapted for differ-
ent image acquisition conditions, including different
comb frame dimensions, colours, or photographic
light conditions. For instance, the software could be
adapted to different pollen colours and structure of
each cell originating from different bee subspecies
and landscapes, as reported by Dupont et al. (2021).
However, for optimizing the performance of the soft-
ware, we recommend following the recommenda-
tions of the DeepBee# developers for the
acquisition of images, taking into consideration lux
intensity, LED positioning (see Alves et al., 2020 for
details) and adjusting the tunnel dimensions to fit
the frame dimensions (Dupont et al., 2021).
Previously developed methods reported that images
acquired under field conditions often suffer from
poor and variable light conditions. For instance, in

the study by Meikle and Weiss (2017), only capped
brood was identified with high certainty.
Furthermore, DeepBee# detects and identifies the
content of every single cell, which is more accurate
than extrapolating areas, and hence avoids over-esti-
mating e.g., the number of capped brood cells, due
to the empty cells in the middle of the brood area
(i.e., Bargen et al., 2020). One drawback of image
analysis compared to visual assessment methods is
the time required for software training and process-
ing. On the other hand, the training allowed us to
improve the accuracy of DeepBee# above 93% for
all cell classes, even for the low frequency cells (i.e.,
eggs and larvae) and the improved version per-
formed well in the remaining images acquired dur-
ing this two-year study. Also, DeepBee# can analyse
a comb in less than 30 seconds and the software can
run a batch of images automatically overnight,
whereas, in Bargen et al. (2020), 20minutes were
required to analyse one frame comb using the
HiveAnalyzer# software.

The logistic constraints of the protocol (e.g., using
a tunnel for image acquisition) can also be a chal-
lenge in studies with many colonies and apiaries.
Therefore, we recommend the use of this protocol in
studies with <10 colonies per apiary and a limited
number of apiaries. To avoid robbing events we sug-
gest monitoring colonies far from each other and to
clean and/or smoking the materials to remove any
pheromones that can trigger defensive behaviours.

Future directions and developments

Automatic and semi-automatic, non-invasive, real-
time and accurate data are optimal for keeping track
of the health status and development of a honey
bee colony. New technologies including scales and
other sensors (e.g., temperature, humidity, sound,
and vibration (Eouzan et al., 2019; Ramsey et al.,
2020)) are attractive, as they are associated with min-
imal colony disturbance. These technologies can be
used for colony evaluation by beekeepers or
researchers, and are promising tools for obtaining
standardized, large-scale, and long-term data on col-
ony development. However, the output from these
sensors needs to be validated to be transformed
into colony development and health status. If these
sensors are calibrated with low accuracy data, a high
error rate will be associated with the output, and the
user will not get accurate information on the colony
development and events. In a similar vein, computer
simulation models which predict colony develop-
ment, are highly dependent on accurate field data
for validation and calibration. EFSA proposed the
development of a honey bee model as a predictive
tool to assess the impact of multiple stressors on
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honey bee colony development (European Food
Safety Authority, 2016). The model (ApisRAM) is com-
posed of several modules that represent the honey
bee colony, the landscape management, resources
and pesticide fate, and other stressors (e.g., infectious
agents, pests and predators) that affect colony health
(European Food Safety Authority, 2016). The combin-
ation of field data, which is collected at fixed points
in time, with agent-based models having high pre-
dictive power, will represent a huge step forward
allowing early detection and prevention of colony
mortality (Requier, 2019). The proposed protocol was
developed to gather accurate data for calibrating the
ApisRAM model (Dupont et al., 2021). However, we
envisage the use of the protocol in other studies
across Europe and elsewhere, as it can encompass
heterogeneity with regard to bee subspecies, climate,
landscape, etc. Despite the possible downsides associ-
ated with a higher workload, we believe the protocol
has the potential to provide reliable data, guarantee-
ing sound knowledge to help future decision-making.
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