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COVID-19, caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), presents a continuing threat to 
both global health and the global economy. By early March 

2021, more than 119 million cases worldwide had been reported, 
with more than 2.6 million deaths1. Despite the implementation of 
unprecedented public health interventions, including social distanc-
ing, contact tracing and large-scale lockdowns of the population2, the 
burden of the disease has continued to rise but with substantial varia-
tion among countries and regions and with countries in many regions 
around the world experiencing multiple waves1. As of 14 March 2021, 
the WHO African Region had experienced two waves of infection 
and had reported a total of over 2.9 million cases of infection and 
more than 74,000 deaths1,3. A third wave is currently in progress.

Gaining an understanding of variation in the progression of 
the pandemic in different countries will aid the response to future 
pandemics. Current evidence from high- and middle-income 
countries suggests that demographics (for example, percentage of 
the population aged 65 years or older), comorbidities, healthcare 
resources and stringency of response are important risk factors for  
COVID-19-related infections2,4–6. It was suggested that Africa would 
be more susceptible to SARS-CoV-2-related cases and deaths given 
the higher prevalence of pre-existing conditions, including tuber-
culosis, malaria, AIDS, diabetes, undernourishment and other 
communicable and non-communicable comorbidities, as well as 
lower accessibility to healthcare7,8. Recent work suggests that spatial 

connectivity might also have an important influence on the course 
of the pandemic in Africa9. Using the data for COVID-19 cases and 
deaths from the WHO COVID-19 Dashboard, this study aimed to 
identify predictors of the timing of the first case and the per capita 
mortality rate in the first and second COVID-19 pandemic waves 
in the WHO African Region and to test for any effect of interven-
tion measures on COVID-19-related deaths. We included, as pre-
dictors, existing indices of epidemic preparedness—COVID-19 
readiness status and the more generic infectious diseases resilience 
index (Supplementary Table 1)—to test the expectation that coun-
tries rated as better prepared would suffer less severe outcomes. 
The main findings and limitations of the study are summarized  
in Table 1.

Results
COVID-19 epidemics in countries of the WHO African Region. 
On 25 February 2020, Algeria was the first country in the WHO 
African Region to report COVID-19 cases (Fig. 1a). Thirty-one 
countries reported their first cases in the 2 weeks from 12 March 
to 26 March 2020. Lesotho was the last of the 47 countries to report 
its first case, on 14 May 2020. There was no apparent relation-
ship between the timing of the first COVID-19 case and the first  
death (Fig. 1a).

The 47 Member States reported a total of 29,635 COVID-19 
deaths in the first wave and 44,850 deaths in the second wave. 
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However, Tanzania discontinued reporting of COVID-19-related 
deaths from 8 May 2020, and Burundi, Eritrea and Seychelles were 
outliers (0.009, 0 and 0 per 100,000 population first wave mortality 
rates, respectively). São Tomé and Príncipe, as well as Seychelles, 
had missing data on the prevalence of HIV. These five countries 
were, therefore, excluded from the mortality rate analyses, giving 
a sample size of 42. Daily new deaths in the whole WHO African 
Region peaked on 5 August 2020 in the first wave and on 18 January 
2021 in the second wave (Fig. 1b), lagging 16 and 7 d behind the 
peak of daily new cases in the first and second waves, respectively. 
The WHO African Region as a whole experienced a higher second 
wave peak than the first wave: 323 deaths (on 5 August 2020) and 
675 (on 18 January 2021), respectively. In the first wave, the highest 
mortality per 100,000 population was reported from South Africa 
(33.3), followed by Cape Verde (17.5) and Eswatini (8.6) (Fig. 1c). 
In the second wave, the highest mortality per 100,000 population 
was also reported from South Africa (55.4), followed by Eswatini 
(39.8) and Botswana (17.7) (Fig. 1d). Twenty countries had higher 
or similar mortality rates in the second wave than in the first wave, 
whereas 23 countries had lower mortality rates in the second wave 
than in the first wave (Fig. 2).

Predictors of the timing of the first case. We included 47 coun-
tries and 15 predictors (Supplementary Fig. 1a–k,p–s) in the Cox 
regression model for timing of the first case. Spearman’s correla-
tion identified five pairs of predictors with correlation coefficients 
greater than 0.6 (Extended Data Fig. 1). The univariable Cox regres-
sion model identified total population size, number of international 
airports, volume of international air travel, COVID-19 test capacity 
and COVID-19 readiness status as risk factors for earlier detection 
of the first case and current health expenditure (percent of GDP) as 
protective factors (Fig. 3 and Supplementary Table 2). In the mul-
tivariable model, the percentage of urban population (hazard ratio 
(HR) = 1.40, 95% confidence interval (CI) 1.01–1.95), number of 
international airports (HR = 1.48, 95% CI 1.02–2.14), volume of 
international air travel (HR = 1.52, 95% CI 1.10–2.11), COVID-19 
test capacity (HR = 3.86, 95% CI 1.83–8.15) and number of borders 

(HR = 2.87, 95% CI 1.12–7.32) were identified as risk factors for 
earlier detection of the first case (Fig. 3 and Supplementary Table 2).

Predictors of per capita mortality during the first wave. We 
included 42 countries and 18 predictors (Supplementary Fig. 1b–s) 
in the generalized linear mixed models (GLMMs) for per capita 
mortality in the first wave. In the univariable analyses, the percent-
age of urban population, GDP per capita, human development 
index, volume of international air travel, infectious disease resilience 
index, prevalence of HIV and latitude were risk factors (Fig. 4 and 
Supplementary Table 3). The correlation between the time to first 
case and per capita mortality was not significant (P = 0.22). In the 
multivariable GLMM, the percentage of urban population (risk ratio 
(RR) = 1.61, 95% CI 1.25–2.06), volume of international air travel 
(RR = 1.31, 95% CI 1.04–1.66) and prevalence of HIV (RR = 1.40, 
95% CI 1.10–1.78) were risk factors for mortality rate in the first wave 
(Fig. 4 and Supplementary Table 3). Percentage of urban population 
was included in all models within +2-corrected Akaike information 
criterion (AICc) scores (Methods); volume of international air travel 
and HIV prevalence were included in most but not all.

None of the predictors in the best multivariable model was 
correlated with any of the COVID-19 testing variables (correla-
tion coefficients < 0.6) (Extended Data Fig. 2). We then re-ran the 
best multivariable GLMMs with each additional testing variable 
(Supplementary Fig. 1u,w–x). No test variable was associated with 
the per capita mortality rate and reduced the AICc, and there were 
no changes in the RRs estimated by the best multivariable model 
(Extended Data Fig. 3 and Supplementary Table 3).

There was a good consistency between the stringency index and 
percent change of residential mobility as indicated by the Google 
mobility data. After controlling for temporal and random effects, 
the stringency index was non-linearly associated with the resi-
dential mobility (P < 0.0001), with an effective degree of freedom 
of 8.66. The R2 of the model is 0.77, and the explained deviance is 
77.5%.

None of the predictors in the best multivariable model was corre-
lated with the two stringency scores (correlation coefficients < 0.6)  

Table 1 | Policy summary

Category Description

Background The direct and indirect effects of the COVID-19 pandemic have been highly heterogeneous across Africa. It is important to establish 
whether this variation is primarily driven by differences in intrinsic socio-ecological characteristics, responses to the pandemic or an 
artifact of differences in reporting.

Main findings and 
limitations

This observational study confirmed that early onsets of national COVID-19 epidemics were partly driven by international 
connectivity, whereas high urbanization, international connectivity and HIV/AIDS prevalence predicted high first wave mortality rate, 
which, in turn, was a predictor of high second wave mortality rate. Levels of preparedness and resilience, expected to reflect a causal 
relationship with effective pandemic management, instead had the opposite relationship. Our analysis corrected for estimated levels 
of under-reporting of COVID-19 deaths. However, varied levels of data availability and quality of reporting still remain a concern, 
particularly the mortality data gaps in some countries excluded from this analysis.

Policy implications The observation that the COVID-19 pandemic has had a greater effect on WHO African Region countries perceived to be less 
vulnerable to infectious disease outbreaks challenges current definitions of ‘preparedness’ and ‘resilience’. More urbanized countries 
with stronger travel links and with more advanced healthcare systems were more vulnerable to COVID-19 mortality, contrary to 
expectations. This could be due to differences in access to healthcare, mismatches between investments in strong health systems 
vis-à-vis COVID-19 response needs and/or the syndemic nature of COVID-19 providing unique challenges. The possible association 
with the prevalence of HIV/AIDS requires further exploration, as multiple co-factors, such as poverty, other health conditions, 
different socio-economic status and other variables, could be correlated with this—although the finding is consistent with a broader 
pattern of a range of comorbidities having a significant effect on COVID-19 mortality rates. Although our results were found to 
be robust to variation in testing effort, there is evidence of under-reporting and a clear need for improved surveillance and death 
certification systems. The finding of no evidence that a more stringent policy response to the first wave reduced the size of the second 
wave in countries that experienced it is consistent with the risk factors that we identify as being difficult or impossible to mitigate 
against. The current and future introduction of variants of COVID-19 will either accentuate or dampen these effects depending on 
their relative infectiousness. Future emphasis should focus on a more comprehensive perspective of preparedness, mitigation and 
resilience.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATURE MEDICINE

(Extended Data Fig. 4). Again, we then re-ran the best multivari-
able GLMMs, once with each stringency score (Supplementary  
Fig. 1y,z). No stringency score was associated with the per capita 
mortality rate, and none reduced the AICc (Extended Data Fig. 5  
and Supplementary Table 3). We explored other thresholds of 
cumulative per capita mortality, and all produced consistent results.

There were 11, 10, 10 and 11 countries in the categories of high 
(area under the curve (AUC) of stringency index)/high (per capita 
mortality), high/low, low/high and low/low, respectively (Fig. 5a). 
In the univariable multinomial logistic model, the percentage of 
urban population, infectious disease resilience index and human 
development index were risk factors for one or more categories rela-
tive to low/low (Extended Data Fig. 6 and Supplementary Table 4). 
In the multivariable multinomial logistic model, the percentage of 
urban population and infectious disease resilience index were risk 
factors for high/high, low/high and/or high/low relative to low/low 
(Fig. 5b). As above, we also added the three COVID-19 testing pre-
dictors into the best multivariable multinomial logistic model, and 
the results remained consistent (Supplementary Table 4).

Predictors of per capita mortality during the second wave. We 
included 42 countries and 19 predictors (Supplementary Fig. 
1b–g,j–o,r,s,v–y and Fig. 1c) in the univariable GLMM for per 
capita mortality in the second wave. Consistent with the results 
for the univariable analysis of the first wave, human development 
index, infectious disease resilience index, prevalence of HIV and 

latitude were risk factors for per capita mortality in the second wave 
(Extended Data Fig. 7 and Supplementary Table 5). Per capita mor-
tality rate in the first wave was also a risk factor. Disability-adjusted 
life years (DALYs) per 100,000 individuals from communicable, 
neonatal, maternal and nutritional diseases was identified as a pro-
tective factor.

Discussion
In this study, we identified statistical predictors of the timing of the 
first case and the per capita mortality rates during the first and sec-
ond COVID-19 pandemic waves for countries in the WHO African 
Region. The percentage of urban population, number of interna-
tional airports, volume of pre-pandemic international air travel, 
COVID-19 test capacity and number of borders were predictors 
of the earlier detection of the first case. The percentage of urban 
population, volume of pre-pandemic international air travel and 
prevalence of HIV were risk factors for per capita mortality rate 
in the first pandemic wave. Stringency and timing of government 
restrictions were not associated with the mortality rate, but coun-
tries with higher proportions of urban population and higher infec-
tious disease resilience scores were at increased risk of an adverse 
outcome, defined as either high AUC of stringency index and/or 
high per capita mortality. Predictors of per capita mortality rates 
in the two waves were broadly consistent, and per capita mortality 
rate in the first wave was predictive of per capita mortality rate in 
the second wave.
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shown. Statistically significant risk factors are in red; protective factors are in blue. Exact two-sided P values for the Wald test are shown for each predictor, 
and two-sided P values < 0.05 were considered statistically significant.
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The association between laboratory capacity to test for COVID-19  
cases (evaluated before the detection of COVID-19 in the WHO 
African Region) and earlier detection of first COVID-19 cases was 
expected. This result highlights the importance and urgency of 
ensuring adequate preparedness, especially in the earliest stages of a 
pandemic, noting that COVID-19 was first detected in Africa over 
7 weeks after it was first detected in China10.

We found that countries with more international airports and 
a greater volume of pre-pandemic international air travel detected 
their first COVID-19 cases earlier, and island nations detected their 
first COVID-19 cases later. Flight connectivity to China was found 
to be a risk factor for earlier detection of COVID-19, irrespective 
of their preparedness status as measured by Global Health Security 
and Joint External Evaluation scores11, but genome sequencing 
data suggest that early cases in Africa were mainly imported from 
Europe and not China12,13.

Pre-pandemic volume of international air travel also predicts per 
capita mortality during the first wave. We interpret this as indicat-
ing that wider seeding of an epidemic before travel restrictions were 
imposed (as they were in all countries in our study) resulted in a 
larger epidemic.

A more urban population predicts both earlier detection of 
COVID-19 and a higher first wave mortality rate. Urban environ-
ments are recognized as risk factors for the transmission of respi-
ratory pathogens in general14. Other studies found an association 
between a more urban population and the number of COVID-19 
cases15, and that countries with higher socio-economic development, 
such as Belgium, United Kingdom and Italy, have higher COVID-19  
mortality rates16,17. Countries with a more urban population and 
greater socio-economic development might have lower COVID-
19 case fatality rates (CFRs)15,18. However, our study focused on per 
capita mortality, as CFR is heavily influenced by COVID-19 testing 
capability, which is highly heterogeneous across countries3,9,19.

We also found that a higher prevalence of HIV was associated 
with a higher mortality rate in the first pandemic wave. HIV has 
been associated with severe COVID-19 during the pandemic; a 
large population-based study in South Africa found that HIV dou-
bled (HR = 2.14) the risk of COVID-19 mortality20. A meta-analysis 
of 22 studies worldwide also found that HIV-positive status was  

associated with an increased risk of COVID-19 mortality21. The 
underlying reasons might include a high prevalence of comor-
bidities in patients with HIV and severe COVID-19 and persistent 
immune suppression in severe COVID-19 (ref. 20). In our study, 
statistical models replacing HIV with other common comorbidi-
ties—tuberculosis (which is strongly correlated with HIV), chronic 
obstructive pulmonary disease, hypertensive heart disease and obe-
sity—fitted the data less well, although it is possible that HIV sta-
tus acts as a marker for a basket of these and other comorbidities. 
Alternatively, any link could be wholly or partially indirect if HIV 
prevalence is correlated with behavioral, lifestyle or socioeconomic 
variables not included in our analysis.

We found that stringency and timing of government restrictions 
were not associated with the mortality rate in the first pandemic 
wave. Some studies found that measures including internal ‘lock-
down’ and rapid border closures were not associated with COVID-19  
mortality17,22, whereas others found that rapid implementation of 
restrictions reduced COVID-19 mortality23. There is a complex 
cause-and-effect relationship between restrictions and mortality 
rate, and our results should not be interpreted as demonstrating that 
restrictions are ineffective, only that any effect is difficult to detect 
by a retrospective statistical analysis3,24. This is expected if countries 
that imposed more stringent restrictions more quickly did so in 
response to the observed or anticipated severity of their epidemic, 
and if differences in stringency, at best, only partially mitigated  
the outcome.

As the response to the pandemic is likely to be damaging in its own 
right (for example, through negative effects on human well-being, 
the economy, education and work), an alternative approach is to 
consider stringency as an outcome variable. The preferred outcome 
is a low per capita mortality rate and fewer restrictions as measured 
by the stringency index. Taking this approach, we found that coun-
tries were more likely to achieve a good outcome if they had a less 
urban population and low infectious disease resilience. Infectious 
disease resilience is a composite index that considers multiple 
factors ranging across multiple domains, including political, eco-
nomic, public health, medical, demographic and disease dynam-
ics (Supplementary Table 1). It is positively correlated with GDP 
per capita, the human development index, volume of international 
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Fig. 4 | RRs and 95% CIs of predictors of per capita mortality in the first wave in univariable and multivariable Poisson GLMM. n = 42 countries. Error bars 
are shown. Statistically significant risk factors are in red. Exact two-sided P values for the Wald test are shown for each predictor, and two-sided P values < 
0.05 were considered statistically significant.
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travel and prevalence of HIV, and negatively correlated with DALY 
rates from both communicable diseases and non-communicable 
diseases (Extended Data Fig. 1). This result contradicts speculation 
that poor countries with a low resilience would be most affected by 
COVID-19 (see also ref. 11). In Africa, more urbanized countries 
and those considered more resilient to infectious diseases suffered 
more from both the direct and indirect effects of the pandemic.

Similar results for the first and second waves suggest that there 
were no major shifts in the epidemiology of COVID-19 over the 
study period, implying no systematic differences in vulnerabilities 
to the two waves. There was no relationship between stringency of 
measures taken during the first wave and the severity of the second 
wave. This indicates that, regardless of the stringency and effective-
ness of the government response, intrinsic differences among coun-
tries have a substantial effect on the course of national epidemics.

This study has some limitations. It is an observational study of 
country-level data and cannot demonstrate a direct, causal link 

between predictors and outcome. Effects due to unmeasured con-
founders might influence the results and interpretation. Statistical 
power is limited by sample size, so the final multivariable mod-
els include only those predictors with the strongest effects; others 
might have effect sizes too small to be retained in the models. Given 
the enormous number of combinations of predictors that could be 
considered, it is possible that the best fitting models were not identi-
fied. Data quality has also been raised as an issue9. Some, possibly 
substantial, under-ascertainment of COVID-19 deaths is likely in 
Africa, as elsewhere25, and could affect our findings if the degree of 
under-ascertainment was correlated with predictors included in our 
analysis. We directly addressed this issue by including in our analy-
ses independent estimates of under-reporting of COVID-19 deaths 
generated by the Institute for Health Metrics and Evaluation25. 
These estimates range up to approximately 75% of COVID-19 
deaths unreported (in Burkina Faso, Nigeria and the Democratic 
Republic of the Congo). The WHO definition of a COVID-19 
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death does not require a positive test result, but it is possible that 
ascertainment is influenced by testing capacity. However, our main 
results are robust to inclusion of indicators of testing effort in our 
statistical models, although we note that test volume data were not 
collected over exactly the same time period.

The stringency variable is a composite index of government 
policies, reflecting that many countries implemented measures as 
a package. Not all policies are expected to have equal effect, and a 
wide range of combinations of measures was implemented across 
the region. We validated the stringency index by comparison with 
Google mobility data. We found a strong association, indicating that 
the index is related to real-world behavior by at least a subset of the 
population. However, the association weakened over time, as has 
been reported elsewhere26.

Our study had several strengths. We considered countries from 
a single WHO region; these should be more comparable in terms 
both of data on predictors and of COVID-19 epidemiology. We 
restricted our analysis to outcome variables judged to be most reli-
ably estimated—date of first case and mortality—while correcting 
for under-reporting/under-ascertainment. The evident plausibility 
of the results of our date of first case analysis improves confidence 
that the predictor and outcome data are fitted for purpose.

In conclusion, we identified risk factors associated with poor 
direct and indirect outcomes of the first two waves of the COVID-19  
pandemic in the WHO African Region countries. Our key finding 
is that countries that were assumed to be better prepared and better 
equipped to respond to the pandemic were also the most vulnerable 
to it. These data should be taken into account in future pandemic 
preparedness planning for WHO African Region countries.
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Methods
Ethics statement. Ethics approval was not required for this study as the data used 
in the study were at the country level, and the study is observational.

Study design and study area. We performed a region-wide, country-based 
observational study (Extended Data Fig. 8) that included all 47 Member States of 
the WHO African Region. The WHO African Region has a total population of 
1,019,922,000, with the median age varying from 15.0 years in Niger to 34.6 years 
in Mauritius27. About 50% of the population in the WHO African Region lack 
access to essential medicines28. Globally, 22 of the 25 countries regarded as most 
vulnerable to infectious diseases are in sub-Saharan Africa29.

We extracted data for daily cases and deaths for each country in the region 
and calculated the following three outcomes: timing of the first case and per capita 
mortality rates in the first and second waves. Predictors relating to demographics, 
socioeconomics, travel, healthcare, comorbidities, readiness and geography were 
extracted from public data sources. The ratio of total COVID-19 mortality to 
reported COVID-19 mortality was obtained from the Institute for Health Metrics 
and Evaluation25. The COVID-19 test data quality and the government response 
data were collected by the Tackling Infections to Benefit Africa (TIBA) Pandemic 
Response Unit. COVID-19 testing policy data were taken from the Oxford 
COVID-19 Government Response Tracker (OxCGRT). Total numbers of tests per 
capita were collected by the Africa Centres for Disease Control and Prevention 
(CDC)3. Statistical models were fitted to evaluate the relationships among the three 
outcomes and predictors. We also ran a secondary analysis for the outcomes per 
capita mortality in the first wave and stringency index.

The start date of the analysis was set as 25 February 2020 when the first case 
was reported from the WHO African Region (in Algeria). We collated values of 
predictor variables as close to this date as possible.

Outcomes. Our first outcome—the timing of the first case—refers to the day on 
which the first official laboratory-confirmed COVID-19 case/cases was/were 
reported to the WHO (Fig. 1a), largely based on case definitions defined by  
the WHO30.

Our other outcomes are the total deaths per 100,000 population (per capita 
mortality rate) during the first and second waves, adjusted for under-reporting 
where appropriate (see below). According to international guidelines for certificate 
and coding of COVID-19 as cause of death31, a death due to COVID-19 is defined 
for surveillance purposes as a death resulting from a clinically compatible illness, 
in a probable or confirmed COVID-19 case, unless there is a clear alternative cause 
of death that cannot be related to COVID disease (for example, trauma). There 
should be no period of complete recovery from COVID-19 between illness and 
death. A death due to COVID-19 might not be attributed to another disease (for 
example, cancer) and should be counted independently of pre-existing conditions 
that are suspected of triggering a severe course of COVID-19.

The pandemic curve for daily new deaths for the whole WHO African Region 
was plotted by using 21-d kernel smoothing using the Nadaraya–Watson estimator 
(Fig. 1b). Kernel smoothing is a common non-parametric method for revealing 
trends in curves. The Nadaraya–Watson estimator can be seen as a weighted 
average using kernel as weighting functions, and a higher weight was assigned 
to daily new deaths closer to the target date32. We chose the date with the first 
minimum daily new deaths (31 October 2020) as the end of the first wave and  
the date of the second minimum daily new deaths (14 March 2021) as the  
end of the second wave, and we calculated per capita mortality rate in each wave 
for each country.

Data on COVID-19 cases and deaths for all 47 Member States in the WHO 
African Region were taken from the WHO COVID-19 Dashboard33. The data 
include daily new cases, cumulative cases, daily new deaths and cumulative deaths.

Predictors. A set of predictors considered likely to affect the timing of the first 
case and the per capita mortality rate were collected and included as explanatory 
variables. The definition, reasons for including the predictor, time range, 
details of missing data and data sources are reported in Supplementary Table 
1. Predictors were classified in nine categories: demographics, socioeconomics, 
travel, healthcare, comorbidities, readiness, geography, COVID-19 testing and 
interventions. Demographic and socioeconomic variables might predict both 
vulnerability to severe disease (for example, by age) and transmission potential (for 
example, urban versus rural populations)19,34. Healthcare, readiness and COVID-19 
testing variables might predict the capability to detect and/or treat cases17,35. Travel 
and the number of shared borders are likely to affect the imported cases from 
neighboring countries36. Comorbidities are related to vulnerability to dying from 
infection16. Latitude is related to climate, which might affect transmission rates37.

Data on COVID-19 testing were obtained from four sources. Testing effort 
was extracted from a recent report of the COVID-19 pandemic in Africa up to the 
end of December 2020 (ref. 3). The predictor variable was total number of tests 
divided by per 100,000 population. Testing policy index data were collected by 
OxCGRT, which records government policy on access to testing. The ordinal scores 
are shown in Supplementary Table 1, and we calculated days with testing policy 
index ≥2 during the first wave (25 February to 31 October 2020). Testing policy 
index at the start of the second wave on 1 November 2020 was used as a baseline 

predictor for per capita mortality in the second wave. A test data quality index 
up to 31 October was generated by the TIBA Pandemic Response Unit and was 
placed into four categories (no data, basic, satisfactory and good; Supplementary 
Tables 1 and 6). Details of data collection are given in the TIBA COVID-19 testing 
report38. Estimated ratios of total COVID-19 mortality to reported COVID-19 
mortality were obtained from the Institute for Health Metrics and Evaluation 
(Supplementary Table 1)25.

Government response data were collected by the TIBA Pandemic Response 
Unit. Details of data collection are given in the TIBA COVID-19 mitigation 
policies report39. All mitigation responses fall into five categories and 14 
subcategories (Supplementary Table 7). Normalized strictness scores were  
devised for each of the 14 subcategories. Based on these normalized strictness 
scores, the stringency index representing policies on containment and closure 
were calculated using a method developed by OxCGRT40, which is by averaging 
the normalized strictness values of 12 subcategories of measures, excluding all 
governance and socio-economic measures and surveillance and testing from public 
health measures.

Two variables related to the stringency index were generated: AUC of 
stringency index scores from 25 February to 31 October 2020 and stringency index 
score when cumulative mortality reached 0.1 per 100,000 population during the 
first wave. Alternative thresholds ranging from 0.001 to 0.2 were also explored  
for validation.

Google mobility data (https://www.google.com/covid19/mobility/) available 
for 25 WHO African Region Member States were used to validate the data for the 
stringency. Details of Google mobility data are included in the TIBA COVID-19 
mitigation policies report39. The residential percent change of mobility was used 
to validate stringency index for the following reasons: (1) the residential category 
has a high correlation coefficient with the other five categories of mobility; (2) 
the location accuracy and the understanding vary less across regions than other 
categories, so the comparison among countries will cause less bias; and (3) the 
intention of many mitigation response measures is to encourage people to stay 
in their residence. As of 15 November 2020, 24 of 47 WHO African countries 
had mobility data for the residential category. Time series plots of stringency 
index against residential mobility are shown in Extended Data Fig. 9. We used 
a generalized additive mixed model to estimate the relationships between the 
stringency index and residential mobility over time. We fitted the residential 
mobility as a spline function of stringency index s(Stringency index) and a spline 
function of day of the year s(doy), which was used to control for the temporal 
trend. The temporal relationship between residential mobility and stringency 
index can be different among countries, so we also introduced a spline function of 
country s(country, bs = ‘re’) as random intercepts and country and day of the year 
(country, doy, bs = ‘re’) as random slopes. The model was expressed as follows.

g(Yij) = s(Stringency index) + s(doy) + s(country, bs = ′re′)

+s(country, doy, bs = ′re′) + εij

where Yij denoted the residential mobility for the ith day in the jth country, and εij 
is the random noise. s() indicated penalized spline function. bs = ‘re’ indicated that 
the basis function is a random effect structure (basis coefficients are penalized by a 
ridge penalty to control the degree of smoothness). We used the default parameter 
settings from the R package mgcv for penalized spline function.

Statistical methods. All 47 Member States were included in the model for the 
timing of the first case, but the number of Member States included in the model 
for per capita mortality in two waves depended on the completeness of the data. 
The epidemic curves for both daily cases and deaths in each country within the 
WHO African Region were plotted to evaluate the completeness of the data. The 
government of the United Republic of Tanzania stopped reporting COVID-19 
cases/deaths from 8 May and, therefore, was excluded.

For predictors, the most recent available data were used—and no earlier than 
2010. If one predictor had missing values, one column of binary indicator was 
added showing which country has missing data and which has not, and both the 
raw data and the indicator were included in the model. All predictors used had 
data available for at least 90% of countries.

Spearman’s rank correlation was used to test for a correlation among predictors. 
Predictors with a correlation coefficient greater than 0.6 were not included in the 
same multivariable model.

Cox proportional hazards regression models were used to determine HRs 
and 95% CIs for individual predictors of timing of the first case. A univariable 
model was fitted first. Only predictors quantified on or before the start date were 
included in this analysis. Comorbidity data were excluded, as there is no a priori 
expectation that these would be predictors. COVID-19 test capacity, COVID-19 
readiness status and the number of borders entered the model as binary variables 
where ‘no’, ‘limited and moderate’ and ‘no border’ were set as the reference levels, 
respectively. For COVID-19 readiness status, we combined ‘limited’ and ‘moderate’ 
into one single level—‘limited and moderate’, because only two countries were at 
the ‘limited’ level (Supplementary Fig. 1q). Three countries (Cape Verde, Mauritius 
and Seychelles) with unknown COVID-19 readiness status were also included in 
the ‘limited and moderate’ level. Other variables entered the model as continuous 
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variables, and all continuous variables were standardized before entering the model 
by subtracting the mean and dividing by the standard deviation. Variables with 
P values less than 0.2 were considered for inclusion in a multivariable model. If 
multiple variables with P values less than 0.2 were highly correlated (correlation 
coefficient greater than 0.6), only one variable was selected each time to enter the 
multivariable model. The multivariable model with the lowest AICc was taken as 
the best model41, but models with +2 AICc scores were also retained.

We used a GLMM with a Poisson error distribution to identify predictors 
of per capita mortality rate in the first wave. We used the reported deaths 
times the ratio of total COVID-19 mortality to reported COVID-19 mortality 
(Supplementary Fig. 1t) as the outcome, population size as an offset and country as 
a random effect. The RRs and 95% CIs were calculated. Five countries (the United 
Republic of Tanzania having incomplete data, Burundi, Eritrea and Seychelles 
being clear outliers and Seychelles and São Tomé and Príncipe having missing data 
for HIV prevalence) were excluded (also for the multinomial logistic model below 
for outcome with respect to per capita mortality in the first wave and stringency). 
Days with testing policy index ≥2 entered the model as a binary variable (using 
median as the cutoff) where ‘below median’ was set as the reference level. Three 
countries (Guinea Bissau, Equatorial Guinea and Comoros) with missing days with 
testing policy index were included in the ‘below median’ level. We treated test data 
quality as binary, combining no data and basic data to the lower level (reference 
level), and satisfactory data and good data to the higher level. Univariable models 
and the best multivariable model were fitted using the same approach as for 
the timing of the first case. We then added the two stringency scores (AUC of 
stringency index in Supplementary Fig. 1y and stringency index when cumulative 
deaths reached 0.1 per 100,000 population in Supplementary Fig. 1z) to the best 
multivariable model and checked for significantly improved model fit (lower 
AICc). We first estimated the correlations between the two stringency scores and 
the set of selected predictors in the best multivariable model, using the Spearman 
rank correlation test. Then, we took the best multivariable model and re-ran it 
by adding each stringency score. Again, only stringency scores with correlation 
coefficients less than 0.6 with the set of selected predictors were included in the 
multivariable model. We repeated this exercise for the three testing variables—that 
is, adding days with testing policy index ≥2 (Supplementary Fig. 1u), test data 
quality (Supplementary Fig. 1w) and tests per capita (Supplementary Fig. 1x) to 
the best multivariable model for per capita mortality in the first wave and asking 
whether the result was consistent after adjusting for COVID-19 testing.

We carried out a secondary analysis using the original set of predictors of 
COVID-19 mortality in the first wave to predict an outcome combining per 
capita mortality in the first wave and stringency index. In this analysis, countries 
were placed into four groups based on the medians of total per capita mortality 
in the first wave and of the AUC of stringency index (high stringency/high 
mortality, high stringency/low mortality, low stringency/high mortality and low 
stringency/low mortality). Multinomial logistic regression was used to estimate 
the relationship between these outcomes and the set of predictors, and the ORs 
and 95% CIs were calculated. Univariable models and the best multivariable 
model were fitted using the same approach as for the first wave mortality rate. Low 
stringency/low mortality was set as the reference level. COVID-19 readiness status 
and number of borders were excluded from the model because no country in the 
low/low level had adequate COVID-19 readiness status, and there was no island 
nation in the high/high level.

For the second wave mortality rate analysis, we fitted only the univariable 
model using the same approach as for first wave mortality rate. We dropped 
predictors related to travel and readiness, given that these pre-pandemic predictors 
cannot represent the baseline level at the start of the second wave. We added per 
capita mortality in the first wave (Fig. 1c) and testing policy index on 1 November 
2020 (Supplementary Fig. 1v) as two new predictors. Testing policy index on 1 
November 2020 entered the model as a binary predictor where ‘below 2’ was set as 
the reference level. AUC of stringency in the first wave (Supplementary Fig. 1y), 
test data quality in the first wave (Supplementary Fig. 1w) and tests per capita as 
of 31 December 2020 (Supplementary Fig. 1x) were considered as predictors of 
second wave mortality rate, respectively.

R version 3.6.3 (R Foundation for Statistical Computing) was used in all 
statistical analyses. R packages used for model fitting included survival, lme4, nnet 
and mgcv. A two-sided P value < 0.05 was regarded as statistically significant. 
The raw African shapefile used in the study was obtained from Data and Maps for 
ArcGIS (formerly Esri Data & Maps, https://www.arcgis.com/home/group.htm
l?id=24838c2d95e14dd18c25e9bad55a7f82#overview) (see the permission for 
use in Supplementary Table 8). Further information on predictors42–53 is given as 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data on COVID-19 cases and deaths were from the WHO COVID-19 Dashboard 
(https://covid19.who.int/info/). Data sources for predictors included the World 
Bank, the United Nations, the Rand Corporation, Our World in Data, the WHO 
Region Office for Africa, Data and Maps for ArcGIS (formerly Esri Data & Maps), 

the Institute for Health Metrics and Evaluation, the Oxford COVID-19  
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Extended Data Fig. 1 | Correlation matrix for predictors in the first wave. Positive correlations are displayed in blue and negative correlations in red colour. 
n = 47 countries. Spearman’s rank correlation test was used. Colour intensity is proportional to the correlation coefficients.
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Extended Data Fig. 2 | Correlation matrix for significant predictors in multivariable model for per capita mortality in the first wave and three test 
variables. Positive correlations are displayed in blue and negative correlations in red colour. n = 42 countries. Spearman’s rank correlation test was used. 
Colour intensity is proportional to the correlation coefficients.
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Extended Data Fig. 3 | Risk ratios and 95% confidence intervals of three test variables for per capita mortality in the first wave in multivariable Poisson 
generalized linear mixed model. n = 42 countries. Error bars are shown. Statistically significant risk factors are in red. Exact two-sided P values for the 
Wald test are shown for each predictor, and two-sided P values < 0.05 were considered statistically significant.
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Extended Data Fig. 4 | Correlation matrix for significant predictors in multivariable model for per capita mortality in the first wave and two stringency 
indices. Positive correlations are displayed in blue and negative correlations in red colour. n = 42 countries. Spearman’s rank correlation test was used. 
Colour intensity is proportional to the correlation coefficients.
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Extended Data Fig. 5 | Risk ratios and 95% confidence intervals of two stringency indices for per capita mortality in the first wave in multivariable 
Poisson generalized linear mixed model. n = 42 countries. Error bars are shown. Statistically significant risk factors are in red. Exact two-sided P values for 
the Wald test are shown for each predictor, and two-sided P values < 0.05 were considered statistically significant.
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Extended Data Fig. 6 | Odds ratios and 95% confidence intervals for outcome with respect to AuC of stringency index and mortality rate in the first 
wave in univariable multinomial logistic regression model. n = 42 countries. COVID-19 readiness status and number of borders were excluded from the 
model because there is no country with adequate COVID-19 readiness status in the reference low/low level and no country with no border in the high/
high level, and putting them in the model will generate super wide 95% CIs. Wald test was used. Relative to low/low, P values for Wald test for percentage 
of urban population are 0.025 (high/low), 0.028 (low/high), and 0.002 (high/high), human development index is 0.020 (high/high), infectious disease 
resilience index are 0.037 (low/high) and 0.006 (high/high). Error bars are shown. Statistically significant risk factors are in red.
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Extended Data Fig. 7 | Risk ratios and 95% confidence intervals of predictors of per capita mortality in the first wave and second wave in univariable 
Poisson generalized linear mixed model. n = 42 countries. Error bars are shown. Statistically significant risk factors are in red; protective factors are in 
blue. Exact two-sided P values for the Wald test are shown for each predictor, and two-sided P values < 0.05 were considered statistically significant. NA, 
not applicable. ND, not done.
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Extended Data Fig. 8 | Flow diagram.
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Extended Data Fig. 9 | Residential percent change from baseline and stringency index over time in 24 countries of the WHO African Region. Time range 
is from first countermeasure implemented in each country in response to COVID-19 up to 31 October 2020. Y1 axis represents residential percent change 
from baseline (Jan 3 – Feb 6, 2020) in Google mobility data (in black). Y2 axis represents stringency index calculated from government response data 
collected by the TIBA Pandemic Response Unit (in red, see Methods).
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