19 research outputs found

    On the Search for Dynamic Equilibrium

    Get PDF

    G_13 is an essential mediator of platelet activation in hemostasis and thrombosis

    Get PDF
    Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A_2 (TXA_2) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G_q, G_i and G_z (refs. 4, 5, 6). However, the role and relative importance of G12 and G13, which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha_13, but not Galpha_12, severely reduced the potency of thrombin, TXA2 and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha_13 deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G_13-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs

    Anaphylactic shock depends on endothelial Gq/G11

    Get PDF
    Anaphylactic shock is a severe allergic reaction involving multiple organs including the bronchial and cardiovascular system. Most anaphylactic mediators, like platelet-activating factor (PAF), histamine, and others, act through G protein–coupled receptors, which are linked to the heterotrimeric G proteins Gq/G11, G12/G13, and Gi. The role of downstream signaling pathways activated by anaphylactic mediators in defined organs during anaphylactic reactions is largely unknown. Using genetic mouse models that allow for the conditional abrogation of Gq/G11- and G12/G13-mediated signaling pathways by inducible Cre/loxP-mediated mutagenesis in endothelial cells (ECs), we show that Gq/G11-mediated signaling in ECs is required for the opening of the endothelial barrier and the stimulation of nitric oxide formation by various inflammatory mediators as well as by local anaphylaxis. The systemic effects of anaphylactic mediators like histamine and PAF, but not of bacterial lipopolysaccharide (LPS), are blunted in mice with endothelial Gαq/Gα11 deficiency. Mice with endothelium-specific Gαq/Gα11 deficiency, but not with Gα12/Gα13 deficiency, are protected against the fatal consequences of passive and active systemic anaphylaxis. This identifies endothelial Gq/G11-mediated signaling as a critical mediator of fatal systemic anaphylaxis and, hence, as a potential new target to prevent or treat anaphylactic reactions

    Gα12/Gα13 Deficiency Causes Localized Overmigration of Neurons in the Developing Cerebral and Cerebellar Cortices▿

    No full text
    The heterotrimeric G proteins G12 and G13 link G-protein-coupled receptors to the regulation of the actin cytoskeleton and the induction of actomyosin-based cellular contractility. Here we show that conditional ablation of the genes encoding the α-subunits of G12 and G13 in the nervous system results in neuronal ectopia of the cerebral and cerebellar cortices due to overmigration of cortical plate neurons and cerebellar Purkinje cells, respectively. The organization of the radial glia and the basal lamina was not disturbed, and the Cajal-Retzius cell layer had formed normally in mutant mice. Embryonic cortical neurons lacking G12/G13 were unable to retract their neurites in response to lysophosphatidic acid and sphingosine-1-phosphate, indicating that they had lost the ability to respond to repulsive mediators acting via G-protein-coupled receptors. Our data indicate that G12/G13-coupled receptors mediate stop signals and are required for the proper positioning of migrating cortical plate neurons and Purkinje cells during development

    Heterotrimeric G Proteins of the G(q/11) Family Are Crucial for the Induction of Maternal Behavior in Mice

    No full text
    Heterotrimeric G proteins of the G(q/11) family transduce signals from a variety of neurotransmitter receptors and have therefore been implicated in several functions of the central nervous system. To investigate the potential role of G(q/11) signaling in behavior, we generated mice which lack the α-subunits of the two main members of the G(q/11) family, Gα(q) and Gα(11), selectively in the forebrain. We show here that forebrain Gα(q/11)-deficient females do not display any maternal behavior such as nest building, pup retrieving, crouching, or nursing. However, olfaction, motor behavior and mammary gland function are normal in forebrain Gα(q/11)-deficient females. We used c-fos immunohistochemistry to investigate pup-induced neuronal activation in different forebrain regions and found a significant reduction in the medial preoptic area, the bed nucleus of stria terminalis, and the lateral septum both in postpartum females and in virgin females after foster pup exposure. Pituitary function, especially prolactin release, was normal in forebrain Gα(q/11)-deficient females, and activation of oxytocin receptor-positive neurons in the hypothalamus did not differ between genotypes. Our findings show that G(q/11) signaling is indispensable to the neuronal circuit that connects the perception of pup-related stimuli to the initiation of maternal behavior and that this defect cannot be attributed to either reduced systemic prolactin levels or impaired activation of oxytocin receptor-positive neurons of the hypothalamus

    G 12

    No full text

    Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis

    Get PDF
    Dermatomyositis (DM) can occur in both adults and juveniles with considerable clinical differences. The links between immune-mediated mechanisms and vasculopathy with respect to development of perifascicular pathology are incompletely understood. We investigated skeletal muscle from newly diagnosed, treatment-naive juvenile (jDM) and adult dermatomyositis (aDM) patients focusing on hypoxia-related pathomechanisms, vessel pathology, and immune mechanisms especially in the perifascicular region. Therefore, we assessed the skeletal muscle biopsies from 21 aDM, and 15 jDM patients by immunohistochemistry and electron microscopy. Transcriptional analyses of genes involved in hypoxia, as well as in innate and adaptive immunity were performed by quantitative Polymerase chain reaction (qPCR) of whole tissue cross sections including perifascicular muscle fibers. Through these analysis, we found that basic features of DM, like perifascicular atrophy and inflammatory infiltrates, were present at similar levels in jDM and aDM patients. However, jDM was characterized by predominantly hypoxia-driven pathology in perifascicular small fibers and by macrophages expressing markers of hypoxia. A more pronounced regional loss of capillaries, but no relevant activation of type-1 Interferon (IFN)-associated pathways was noted. Conversely, in aDM, IFN-related genes were expressed at significantly elevated levels, and Interferon-stimulated gene (ISG) 15 was strongly positive in small perifascicular fibers whereas hypoxia-related mechanisms did not play a significant role. In our study we could provide new molecular data suggesting a conspicuous pathophysiological 'dichotomy' between jDM and aDM: In jDM, perifascicular atrophy is tightly linked to hypoxia-related pathology, and poorly to innate immunity. In aDM, perifascicular atrophy is prominently associated with molecules driving innate immunity, while hypoxia-related mechanisms seem to be less relevant

    Forebrain-Specific Inactivation of G(q)/G(11) Family G Proteins Results in Age-Dependent Epilepsy and Impaired Endocannabinoid Formation

    Get PDF
    Metabotropic receptors coupled to G(q)/G(11) family G proteins critically contribute to nervous system functions by modulating synaptic transmission, often facilitating excitation. We investigated the role of G(q)/G(11) family G proteins in the regulation of neuronal excitability in mice that selectively lack the α-subunits of G(q) and G(11), Gα(q) and Gα(11), respectively, in forebrain principal neurons. Surprisingly, mutant mice exhibited increased seizure susceptibility, and the activation of neuroprotective mechanisms was impaired. We found that endocannabinoid levels were reduced under both basal and excitotoxic conditions and that increased susceptibility to kainic acid could be normalized by the enhancement of endocannabinoid levels with an endocannabinoid reuptake inhibitor, while the competitive cannabinoid type 1 receptor antagonist SR141716A did not cause further aggravation. These findings indicate that G(q)/G(11) family G proteins negatively regulate neuronal excitability in vivo and suggest that impaired endocannabinoid formation in the absence of G(q)/G(11) contributes to this phenotype
    corecore